
UNIVERSITY OF BRISTOL

Not a Real Examination Period

Department of Computer Science

2nd Year Practice Paper for the Degrees of
Bachelor in Computer Science

Master of Engineering in Computer Science
Master of Science in Computer Science

COMS20010
Algorithms II

TIME ALLOWED:
2 Hours

Answers

Other Instructions

1. You may bring up to four A4 sheets of pre-prepared notes with you into
the exam, but no other written materials.

2. You may use a calculator with the Faculty seal of approval if you wish.

TURN OVER ONLY WHEN TOLD TO START WRITING

Page 1 of 18

Section 1 — Short-answer questions (75 marks total)
You do not need to justify your answers for any of the questions in this section, and you
will not receive partial credit for showing your reasoning. Just write your answers down
in the shortest form possible, e.g. “A” for multiple-choice questions, “True” for true/false
questions, or “23” for numerical questions. If you do display working, circle or otherwise
indicate your final answer, as if it cannot be identified then the question will not be marked.

Question 1 (5 marks)
For each of the following statements, identify whether it is true or false.
(a) n ∈ Ω(

√
n). (1 mark)

Solution: True.

(b) n ∈ o(100n). (1 mark)

Solution: False.

(c) n ∈ O(100n). (1 mark)

Solution: True.

(d) log n ∈ O(n1/100). (1 mark)

Solution: True.

(e) (log n)logn ∈ O(n). (1 mark)

Solution: False. We have (log n)logn = elogn·log logn = nlog logn ∈ ω(n).

Question 2 (5 marks)
Write down an Euler walk for the following graph.

1

23

4

5

6 7

8

Solution: Any walk must start with 3 and end with 6 or vice versa. One example is
32187654158436.

Page 2 of 18

Question 3 (5 marks)
Let s ≥ 2 be an integer. Consider a regular hexagonal arrangement of regular hexagonal
cells, with each side consisting of s cells. Consider the graph Gs formed by taking each
cell to be a vertex, and joining two cells by an edge if they share a side. An example is
shown below for s = 3, where the black lines show the arrangement of cells and the red
dotted lines show the edges of Gs.

s = 3

s = 3

Give a formula for the number of edges in Gs in terms of s. You may use the fact that
Gs has 3s2 − 3s+ 1 vertices. (You do not need to show your working — only your final
answer will be marked. You may wish to check that your answer is correct when s = 2.)

Solution: There are six cells at corners of the hexagon, which all have degree 3. There
are 6(s− 2) cells at edges of the hexagon, which all have degree 4. The remaining cells
all have degree 6, and they form the vertices of a Gs−1 so there are 3(s−1)2−3(s−1)+1
of them. Putting this all together with the handshaking lemma, we see that

|E(Gs)| =
1
2

∑
v∈V (Gs)

d(v) = 1
2

(
6 · 3 + 6(s− 2) · 4 +

(
3(s− 1)2 − 3(s− 1) + 1

)
· 6

)
= 9 + (12s− 24) + (9s2 − 18s+ 9− 9s+ 9 + 3)
= 9s2 − 15s+ 6 = 3(3s2 − 5s+ 2).

Question 4 (5 marks)
Consider a depth-first search in the following graph starting from vertex 1.

Page 3 of 18 Turn Over/. . .

4

3

6

7

9

1

2

5

8

In the implementation of depth-first search given in lectures, we say vertex i is explored
when explored[i] is set to 1. (For example, the start vertex is explored first.) Which
vertex will be explored sixth if the start vertex is 4? Assume that whenever the search
has a choice of two or more vertices to visit next, it picks the vertex with the lowest
number first.

Solution: 2. DFS will traverse edges in the order:

{4, 3}, {3, 6}, {3, 7}, {7, 1}, {1, 2}, {2, 5}, {5, 8}, {7, 9}.

Question 5 (5 marks)
Consider the graph G and the matching M ⊆ E(G) shown below, where M is drawn
with blue dashed lines.

0

1

2

3

4

5

6

7

8

9

Write down an augmenting path for M in G.

Solution: The available paths are 49381506, 481506, 60518394 and 605184.

Page 4 of 18

Question 6 (5 marks)
Consider the “unoptimised” union-find data structure presented in lectures, in which
a sequence of n operations has a worst-case running time of Θ(n log n) rather than
Θ(nα(n)). Let G be the graph of such a data structure initialised with the following
commands:
MakeUnionFind([8]);
Union(1, 2);
Union(1, 3);
Union(3, 4);
Union(5, 6);
Union(5, 1);
Union(7, 8);
Union(6, 7).
(a) How many components does G have? (2 marks)

Solution: 1, spanning all of {1, . . . , 8}.

(b) What is the maximum depth of any component of G? (Remember that depth is
the greatest number of edges from the root to any leaf.) (3 marks)

Solution: 2. After the first five union commands, {1, 2, 3, 4} and {5, 6} both
span depth-1 trees; they are then combined into a depth-2 tree by Union(5, 1).
Union(7, 8) then forms another depth-1 tree, which is added as a child of the root
by Union(6, 7).

Question 7 (5 marks)
Let G = (G, cE, cV , s, t) be a vertex flow network with |V (G)| = 100. In lectures, we
covered a way of finding a maximum flow in G by applying the Ford-Fulkerson algorithm
to a new flow network (H, c, s′, t′). How many vertices will H have, in this case? Choose
one of the following options.

A. 98.
B. 100.
C. 102.
D. 198.
E. 200.
F. 202.
G. None of the above, or it’s impossible to tell.

Solution: D — 198. The construction in lectures forms H by replacing each of the
hundred vertices in G with a two-vertex gadget except for the source s and the sink t,
for a total of 98 extra vertices added.

Page 5 of 18 Turn Over/. . .

Question 8 (5 marks)
Which of the following trees T1, . . . , T5 are valid red-black trees? (In case you are unable
to distinguish the colours, the red nodes are drawn as squares and the black nodes are
drawn as circles.)

1

2

3

4

5

6

7

T1

1

2

3

4

T2

1

2

3

4

5

T3

1

2

3

4

5

T4

1

3

4

6

9

12

13

15

17

20

25

26

30

31

32

34

40

50

52

53

57

64

69

T5

Solution: T1, T3 and T5 are valid. T2 is invalid because the root has degree 1, and
T4 is invalid because 45 and 423 are two different root-leaf paths containing different
numbers of black nodes.

Question 9 (5 marks)
Consider an instance of interval scheduling with interval set

R = {(1, 3), (2, 6), (4, 9), (5, 6), (6, 11), (7, 8), (9, 11), (10, 12), (11, 12), (11, 13)}.

(a) When the greedy interval scheduling algorithm discussed in lectures is run on this
input, which interval will it choose third? (3 marks)

Page 6 of 18 Qu. continues . . .

(cont.)

Solution: (7, 8).

(b) What is the size of a maximum compatible set? (2 marks)

Solution: 5. The full set outputted by the algorithm is {(1, 3), (5, 6), (7, 8), (9, 11),
(11, 12)}.

Question 10 (10 marks)
Consider the edge-weighted directed graph below, pictured part of the way through
executing the Bellman-Ford algorithm to find the distances d(v, v3) for all vertices v, i.e.
the single-sink version of the algorithm with sink v3. The current bounds on distance
recorded by the algorithm are written inside each vertex. The edges currently selected
by the algorithm are drawn thicker, dotted, and in blue.

7

5

-2

-4

5

8

-4

-2 -3

-6

-2

-1

4 -2

7

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10
91

6

0 92

96

7

91

92 95

93

Carry out one further iteration of the Bellman-Ford algorithm — that is, updating each
vertex exactly once — processing the vertices in the order v1, v2, . . . , v10. After carrying
out this iteration:
(a) What is the weight of v2? (2 marks)

Solution: -5.

(b) What is the weight of v6? (2 marks)

Page 7 of 18 Turn Over/Qu. continues . . .

(cont.)

Solution: -3.

(c) What is the weight of v10? (2 marks)

Solution: -3.

(d) What is the currently-stored path from v5 to v3 (again, after carrying out the
iteration)? (2 marks)

Solution: v5v10v7v9v4v3.

(e) Is another iteration of the algorithm required to achieve accurate distances to v1?
(2 marks)

Solution: Yes. The state of the algorithm after the iteration in the question is
as shown below.

7

5

-2

-4

5

8

-4

-2 -3

-6

-2

-1

4 -2

7

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10
91

95

0 92

99

93

91

95 95

93

The next iteration of Bellman-Ford will update the distance of v1 to −4 and the
distance of v6 to −6. (This will be the last iteration.)

Question 11 (10 marks)
You are trying to get a high score in the popular video game Tambourine Hero. In
this game, you score points by shaking your tambourine in time to a song playing in
the background. After playing certain beats of the song, you are awarded “star power”;
your stored star power is an integer between 0 and 100. At any time when you have 50
or more star power, you can “activate star power”. You will then lose star power at a

Page 8 of 18 Qu. continues . . .

(cont.)

rate of one point per beat until you run out, at which point it is deactivated; while star
power is activated, you will earn double points. Any extra star power you are awarded
over 100 points is wasted.
Formally, a song is a series of beats b1, . . . , bt. Each beat bi is a pair (pi, si) of pi points
and si star power, where pi and si are non-negative integers. Let Pi be your total points
after beat i, and let Si be your total star power after beat i. Initially, P0 = S0 = 0.
Subsequently, after beat i ≥ 1,

Pi =
Pi−1 + 2pi if star power active,
Pi−1 + pi otherwise.

Si =
min(100, Si−1 + si)− 1 if star power active,
min(100, Si−1 + si) otherwise.

After each beat, if Si ≥ 50 and star power is not active, you may choose to activate
star power before the next beat. It then stays active until the end of the next beat i
with Si = 0. Fill in the blanks in the following dynamic programming algorithm,
which outputs a list of the beats on which to activate star power in order to achieve the
maximum possible score.
(Don’t copy the whole algorithm out, just write what should go in each blank! Each
blank should contain a single expression, e.g. max(b, c) or next[b][s][a]. Two marks will
be awarded per blank correctly filled in.)

Algorithm: BeATambourineHero
1 Let next[b][s][a], score[b][s][a]← 0 for all 0 ≤ b ≤ t, all 0 ≤ s ≤ 100, and all a ∈ {0, 1}.
2 for b = t− 1 to 0 do
3 for s = 1 to 100 do
4 Let new_s_inactive← .
5 Let inactive_score← pb + score[b+ 1][new_s_inactive][0].
6 Let activating_score← pb + score[b+ 1][new_s_inactive][1] if s ≥ 50, and activating_score← −1

otherwise.
7 Let score[b][s][0]← max(inactive_score, activating_score).
8 Let score[b][s][1]← 2pb + score[b+ 1][new_s_inactive− 1][] if new_s_inactive ≥ 2, and

score[b][s][1]← 2pb + score[b+ 1][0][0] otherwise.
9 If activating_score > inactive_score, let next[b][s][0] = 1.

10 If new_s_inactive ≥ 2, let next[b][s][1] = 1.

11 Let active← 0 and s← 0.
12 for b = 0 to t− 1 do
13 If = 0 and = 1, print “Activate star power after beat b”.
14 Let s← min(100, s+ sb+1)− 1 if active = 1 and s← min(100, s+ sb+1) otherwise.
15 Let active← next[b+ 1][s][].

Solution: min(100, s+ sb), 1, active, next[b][s][0], and active. Here is the complete
algorithm.

Page 9 of 18 Turn Over/. . .

Algorithm: BeATambourineHero
1 Let next[b][s][a], score[b][s][a]← 0 for all 0 ≤ b ≤ t, all 0 ≤ s ≤ 100, and all a ∈ {0, 1}.
2 for b = t− 1 to 0 do
3 for s = 1 to 100 do
4 Let new_s_inactive← min(100, s+ sb).
5 Let inactive_score← pi + score[b+ 1][new_s_inactive][0].
6 Let activating_score← pi + score[b+ 1][new_s_inactive][1] if s ≥ 50, and

activating_score← −1 otherwise.
7 Let score[b][s][0]← max(inactive_score, activating_score).
8 Let score[b][s][1]← 2pi + score[b+ 1][new_s_inactive− 1][1] if new_s_inactive ≥ 2, and

score[b][s][1]← 2pi + score[b+ 1][new_s_inactive− 1][0] otherwise.
9 If activating_score > inactive_score, let next[b][s][0] = 1.

10 If new_s_inactive ≥ 2, let next[b][s][1] = 1.

11 Let active← 0.
12 for b = 0 to t− 1 do
13 If active = 0 and next[b][s][0] = 1, print “Activate star power after beat b”.
14 Let s← min(100, s+ sb+1)− active.
15 Let active← next[b+ 1][s][active].

The idea is that score[b][s][a] holds the maximum possible score from the end of beat
b with available star power s and star power currently active if a = 1 and inactive if
a = 0.

Question 12 (5 marks)
A Hamilton path in a graph G is a path containing every vertex, i.e. a Hamilton cycle
minus an edge. If G is a graph and x, y ∈ V (G), we define HP(G, x, y) to be the problem
of deciding whether or not G contains a Hamilton path from x to y, so (G, x, y) is a Yes
instance if such a path exists and a No instance otherwise. Likewise, we define HC(G)
to be the problem of deciding whether or not G contains a Hamilton cycle.
(a) Is it true that both HP and HC are decision problems? (1 mark)

Solution: Yes.

(b) Is it true that both HP and HC are in NP? (2 marks)

Solution: Yes. If I tell you that a sequence of edges forms a Hamilton cycle in
G, or a Hamilton path in G from x to y, then you can verify this in polynomial
time.

(c) Is it true that if we require every vertex in the input graph G to have degree at
least |V (G)|/2, then HC is in P? (You may assume P ̸= NP.) (2 marks)

Solution: Yes. In this case, the correct output of HC(G) is always Yes by Dirac’s
theorem.

Question 13 (5 marks)
Consider the following reduction between the problems HC and HP introduced in Ques-
tion 12. Let G be an instance of HC. For every edge {x, y} ∈ E(G), run an algorithm
(or oracle) for HP with inputs G−{x, y}, x, and y, where G−{x, y} is the graph formed
from G by removing {x, y} from E(G) and leaving V (G) unchanged. If any of those
algorithms output Yes, then return Yes; otherwise, return No.

Page 10 of 18 Qu. continues . . .

(cont.)

(a) Is this a reduction from HC to HP, or a reduction from HP to HC? (3 marks)

Solution: From HC to HP.

(b) Is this a Karp reduction, or a Cook reduction? (2 marks)

Solution: A Cook reduction.

Page 11 of 18 Turn Over/. . .

Section 2 — Long-answer questions (75 marks total)

Question 14 (5 marks)
Give an example of a graph which contains a length-5 cycle as a subgraph, but not as
an induced subgraph.

Solution: One example (of many) would be a length-5 cycle with a chord, e.g.

V (G) = [5], E(G) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}, {1, 3}}.

Question 15 (15 marks)
You are running a long-haul trucking company. You have a fixed number of vehicles
which transport material between a set of cities C1, . . . , Ck. For all i ∈ [k], you currently
have ti ≥ 0 trucks in city Ci. Over the course of the day, each truck in city Ci can haul
a load to any other city Cj with total profit pi,j (after accounting for fuel costs and so
on). Each city contains a SimplifyTheProblem Inc. depot at which your trucks all stop.
These depots handle loading, unloading, and various administrative tasks, but the depot
in city Ci is only under contract to receive and unload Ti ≥ 1 trucks per day; thus you
must avoid sending more than Ti trucks to city Ci. Assume that between travel, loading,
and unloading, each trip between any pair of cities takes the full day.
Your goal is to choose destinations for your trucks to maximise your total profit for
today without any regard for the future. (Coincidentally, you also invest heavily in
fossil fuels and cryptocurrencies.) Formulate this as a linear programming problem and
give a brief explanation of what your variables represent and why your constraints and
objective function are appropriate.

Solution: Let xi,j be the number of trucks we send from city i to city j. The LP is as
follows:

k∑
i,j=1

pi,jxi,j → max, subject to

k∑
j=1

xi,j ≤ Ti for all i ∈ [k],

k∑
i=1

xi,j ≤ tj for all j ∈ [k],

xi,j ≥ 0 for all i, j ∈ [k].
The objective function is our total profit. The first constraint says that we can’t send
more trucks out of any city Ci than we have in the city at the start of the day. The
second constraint says that we can’t send more trucks to any city Cj than its depot
can process. The third constraint says we can’t send a negative number of trucks from
one city to another.

Page 12 of 18

Question 16 (10 marks)
Explain briefly why the reduction between HC and HP of Question 13 is valid. (A good
answer here will likely be no longer than one paragraph, and certainly no longer than
two paragraphs.)

Solution: The algorithm for HP is called at most |E(G)| times on instances with
|E(G)| − 1 edges and |V (G)| vertices; these quantities are all polynomial in the size of
G as required by the definition of a Cook reduction. Suppose G is a Yes instance of HC.
Then G contains a Hamilton cycle C; take an edge {x, y} ∈ E(C). Then by following
C, we obtain a Hamilton path from x to y in G − {x, y}, so one of the HP instances
must output Yes and we return Yes as required. Conversely, suppose we return Yes, so
that there exists {x, y} ∈ E(G) such that G−{x, y} contains a Hamilton path P from
x to y; then Pxy is a Hamilton cycle, and so G is a Yes instance. Thus we return Yes
if and only if G is a Yes instance of HC, as required.

Question 17 (30 marks)
Solve two from the following four questions (15 marks each). If you attempt more
than two, you will not gain any extra credit, and only the first two questions
attempted will be marked. If you do not wish one of your attempts to be
marked, cross it out clearly along with all working.
(a) Let G be a graph, let M be a matching in G of size 50, and let M∗ be a maximum

matching in G. Suppose that the symmetric difference of M and M∗ contains
exactly exactly 6 components. What are the possible sizes of M∗? Briefly explain
your answer. (Hint: You may find it helpful to use ideas from the proof of Berge’s
lemma.)

Solution: As in the proof of Berge’s lemma, each component of M△M∗ has
either the same number of M -edges and M∗-edges, one more M -edge than M∗-
edges, or one more M∗-edge than M -edges. So if there are six components, we
have |M | − 6 ≤ |M∗| ≤ |M |+ 6. Moreover, since M∗ is a maximum matching, we
have |M | ≤ |M∗|. Combining these two facts, we obtain |M | ≤ |M∗| ≤ |M | + 6,
i.e. |M∗| could take any value in {50, 51 . . . , 56}.

(b) Let G = (V,E) be a connected graph with edge weights given by w : E → R. You
may assume that every edge gets a different weight. Let C be a cycle in G, and let
e be the highest-weight edge in C. It can be shown that no minimum spanning tree
of G contains e.
Using this fact or otherwise, give an algorithm which, given an n-vertex connected
graph G = (V,E) in adjacency list format with |E| = n + 50, outputs a minimum
spanning tree in O(n) time. Briefly explain why your algorithm works and why it
runs in O(n) time.

Page 13 of 18 Turn Over/Qu. continues . . .

(cont.)

Solution: The algorithm repeatedly removes highest-weight edges from cycles
until no cycles remain in the graph. By part (a), the edges we remove are not
contained in any minimum spanning tree of G. Moreover, we can never disconnect
a graph by removing an edge from a cycle, so by the Fundamental Lemma of Trees,
after we have applied this procedure 51 times we will be left with an (n− 1)-edge
connected graph on n vertices, which is a tree (and therefore has no more cycles
to remove). The minimum spanning tree of a tree is itself, so the algorithm will
indeed return a minimum spanning tree of G. We can find cycles using depth-first
or breadth-first search in O(|E|) time, we can find the highest-weight edge on a
given cycle in O(n) time, and we repeat the process 51 ∈ O(1) times, so the total
running time is O(n+ |E|) = O(n).

(c) John is trying to come up with an algorithm to test whether two connected graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic in polynomial time, and comes up
with the following.

Algorithm: BadIsoTest
1 for d = 0 to n do
2 if G1 doesn’t contain the same number of degree-d vertices as G2 then
3 Return No.

4 Let ∆ be the maximum degree of G1.
5 Let v be an arbitrarily-chosen vertex of degree ∆ in G1.
6 Using BFS, let Li(v) = {x ∈ V1 : d(v, x) = i in G1} for all i ∈ [n].
7 for w ∈ V2 of degree ∆ in G2 do
8 Using BFS, let Li(w) = {x ∈ V2 : d(w, x) = i in G2} for all i ∈ [n].
9 if for all i, d ∈ [n], Li(v) contains the same number of degree-d vertices in G1 as Li(w) contains in G2 then

10 Return Yes.

11 Return No.

Give two connected graphs G1 and G2 which are not isomorphic, but which have
the property that BadIsoTest(G1, G2) is guaranteed to incorrectly return Yes, no
matter how v is chosen. Briefly explain why BadIsoTest(G1, G2) always returns
Yes. (You do not have to explain why G1 and G2 are not isomorphic.)

Solution: Here is one possible answer:

v2

v1

w2

w1

G1 G2

Page 14 of 18 Qu. continues . . .

(cont.)

BadIsoTest is guaranteed to take v = v1, so the only candidate for w is w1. Then
L1(v) and L1(w) each contain one vertex of degree 4 and five vertices of degree 3,
and Lk(v) and Lk(w) are all empty for all k ≥ 2, so BadIsoTest(G1, G2) returns
Yes. Any isomorphism from G1 to G2 would have to map v1 to w1 (as the only
vertices of degree 6); but G1 − v1 and G2 − v2 are not isomorphic, e.g. there is a
length-3 path starting from w2 in G2 − w1 but no length-3 path starting from v2
in G1 − v1.
More generally, any solution along the lines of “find two non-isomorphic graphs
H1 and H2 with the same degree sequence, then form G1 by adding a vertex joined
to everything in H1 and form G2 by adding a vertex joined to everything in H2”
will work, along with many other possibilities.

(d) In this question, we work with a variant of SAT in which variables cannot be
negated. Given literals a, b and c, which need not be distinct, an even clause
EVEN(x, y, z) evaluates to True if and only if either zero or two of x, y and z
evaluate to True. A width-3 positive OR clause is an OR clause of three variables
(i.e. un-negated literals). A positive even formula is a conjunction of even clauses
and width-3 positive OR clauses. For example,

EVEN(a,¬b, c) ∧ EVEN(a, a, d) ∧ (a ∨ b ∨ e) ∧ EVEN(c, d, e).

is a positive even formula, but (¬a∨ b) is not due to both the negated variable and
the fact that the clause only contains two variables. The decision problem POS-
EVEN-SAT asks whether a positive even formula (given as the input) is satisfiable,
in which case the desired output is Yes.
i. Give a Karp reduction from POS-EVEN-SAT to 3-SAT and briefly explain why

it works.
Solution: Consider an instance of POS-EVEN-SAT. We convert it to CNF
form in polynomial time. Any positive OR clause is already in CNF form, and
we can write each even clause EVEN(x, y, z) in CNF form as follows:

EVEN(x, y, z) = ¬
(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z)

)
= (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z).

Then the resulting CNF formula evaluates to True if and only if EVEN(x, y, z)
does, so the corresponding 3-SAT instance is satisfiable if and only if the
original POS-EVEN-SAT instance is satisfiable, as required.

ii. Give a Karp reduction from 3-SAT to POS-EVEN-SAT and briefly explain why
it works.
Solution: Consider an instance F of 3-SAT with variables x1, . . . , xn; we will
construct an instance F ′ of POS-EVEN-SAT in polynomial time. We first add
a new variable t and a corresponding clause EVEN(t, t,¬t); observe that tmust

Page 15 of 18 Turn Over/. . .

be True in any satisfying assignment. We further add clauses EVEN(xi, yi, t)
for each i ∈ [n]. Since t must be True in any satisfying assignment, it follows
that yi = ¬xi in any satisfying assignment. Finally, we copy the OR clauses
of F into F ′, replacing each instance of a literal ¬xi with the corresponding
variable yi. If F ′ is satisfiable, then yi = ¬xi for all i, so x1, . . . , xn form a
satisfying assignment for F . Conversely, if F is satisfiable, then we obtain a
satisfying assignment for F ′ on taking yi = ¬xi and t = True. Thus F is a
Yes instance of 3-SAT if and only if F ′ is a Yes instance of POS-EVEN-SAT,
as required.

Question 18 (15 marks)
Choose one of the three following problems to solve. If you attempt more than one,
you will not gain any extra credit, and only the first question attempted will
be marked. If you do not wish one of your attempts to be marked, cross it
out clearly along with all working.
(a) For any connected graph G, we say that a vertex v ∈ V (G) is outside the core if G−v

is connected. Prove that any connected graph G with at least two vertices contains
at least one vertex outside the core. (One possible approach uses induction.)

Solution: One approach is via induction on the number n of vertices in G. If
n = 2, then G must be the graph consisting of a single edge; hence both vertices in
G are outside the core. Suppose as an inductive step that any k-vertex connected
graph contains at least one vertex outside the core for some k ≥ 2, and let G be
a (k + 1)-vertex connected graph. If G is a tree, then G contains a leaf v, which
is outside the core. Suppose instead that G contains a cycle C, and let v ∈ V (G)
be a vertex on that cycle. Let H be the component of G − v containing C − v.
Then by induction, H contains a vertex w outside the core, and moreover v sends
at least two edges into H; hence G− w is still connected.
Alternatively, pass to a spanning tree T of G. Any tree has at least one leaf w,
and G− w is still connected.

(b) Consider a barter economy with goods G1, . . . , Gt. For all i and j, you can directly
trade xi units of Gi for yj units of Gj; this is expressed as the ratio ri,j = xi/yj.
Notice that you can trade one unit of Gi for rijrjk units of Gk, by first trading Gi

for Gj and then trading Gj for Gk; the same holds for longer chains of trades. You
are interested in becoming obscenely wealthy, and so you are looking for a trading
cycle C = xi1 . . . xitxi1 such that the product ri1,i2 . . . rit−1,itrit,i1 of all the ratios is
strictly greater than 1, leaving you with more goods G1 than you started with. We
call such a cycle an arbitrage cycle. Give a polynomial-time algorithm to decide
whether an arbitrage cycle exists, and explain why it works.
(Hint: Recall that distances are not well-defined in a directed graph with cycles of
negative total weight. In fact, you can check whether such cycles exist in polynomial
time by running the Bellman-Ford algorithm for one extra iteration and seeing

Page 16 of 18 Qu. continues . . .

(cont.)

whether the weights change — if they do, then the graph contains a negative-weight
cycle.)

Solution: First generate the graph with vertex set {G1, . . . , Gt}, edge set {{Gi, Gj} :
i, j ∈ [t], i ̸= j}, and edge weights w({Gi, Gj}) = log(1/ri,j). Run Bellman-Ford
to check whether G has a negative-weight cycle, and return Yes if it does and No
otherwise.
The total weight of a cycle C = Gi1 . . . GitGi1 in G is given by

log(1/ri1,i2) + · · ·+ log(1/rit−1,it) + log(1/rit,i1) = − log
(
ri1,i2 · . . . · rit−1,it · rit,i1

)
.

Thus the total weight of C in G is negative if and only if the product ri1,i2 · . . . ·
rit−1,it · rit,i1 is greater than 1, i.e. if and only if C is an arbitrage cycle, and our
algorithm outputs the correct answer.

(c) You are running a polyamorous dating site, and are finding that the problem of
finding compatible groups seems to be harder to solve than finding large matchings
in a bipartite graph. Consider the following highly simplified version of the problem,
in which each person is only interested in a closed relationship with exactly two
others. You are given a set S of people, and a set T of compatible triples of people.
We say D ⊆ T is a dating arrangement if t1 ∩ t2 = ∅ for all distinct t1, t2 ∈ D;
you seek a dating arrangement which is as large as possible. Prove that even this
simplified version of the problem is still NP-hard to solve exactly. You don’t need
to spell out every detail of the argument, but it should be clear how and why your
reduction works.
Hint: Try reducing from 3-SAT. You will find gadgets similar to the ones shown
below very useful, where the dots represent people and the triangles represent triples
in T .

Solution: The general form of the above gadget is, for some integer x ≥ 1:

• a collection of x “true terminals” t1, . . . , tx;

• a collection of “false terminals” f1, . . . , fx;

Page 17 of 18 Turn Over/Qu. continues . . .

(cont.)

• a collection of “scaffolds” p1, . . . , p2x.

The triples of the gadget are then given by

{p1, t1, p2}, {p2, f1, p3}, {p3, t2, p4}, {p4, f2, p5}, . . . , {p2x−1, fx, p2x}.

The key observation is that any dating arrangement can contain at most x triples
from the gadget, and that it contains exactly x if and only if either every person
in {t1, . . . , tx} is covered by a triple from the arrangement or every person in
{f1, . . . , fx} is covered by a triple from the arrangement. We can use this to
represent the state of a variable. Call this gadget an x-pointed star.
Let F be an arbitrary instance of 3-SAT, with variables x1, . . . , xn and clauses
C1, . . . , Cm. If xi appears in ki clauses, we represent xi by a ki-pointed star Si.
We represent each clause Ci by a pair of people c−i , c

+
i . If xi appears as an un-

negated literal in Cj, we add a triple joining c−j , c
+
j to an unused true terminal of

Si; likewise, if xi appears as a negated literal in Cj, we add a triple joining c−j , c
+
j

to an unused false terminal of Si.
We claim that satisfying assignments of F then correspond to dating assignments
of size ∑

i ki + m. In one direction, any satisfying assignment corresponds to a
dating assignment in which if xi is set to True then we choose an arrangement
from Si which covers every false terminal, if xi is set to False then we choose an
arrangement from Si which covers every true terminal, and every pair of clause
people c−j , c

+
j is covered by a triple including a terminal from a literal which is

true in Cj. Conversely, it is not too hard to show that any maximum dating
assignment must be of this form. Details of the reduction can be found in chapter
8.6 of Kleinberg and Tardos.

Page 18 of 18

END OF PAPER

