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Section 1 — Short-answer questions (75 marks total)

You do not need to justify your answers for any of the questions in this section, and you
will not receive partial credit for showing your reasoning. Just write your answers down
in the shortest form possible, e.g. “A” for multiple-choice questions, “True” for true/false
questions, or “23” for numerical questions. If you do display working, circle or otherwise
indicate your final answer, as if it cannot be identified then the question will not be marked.

Question 1 (5 marks)
For each of the following statements, identify whether it is true or false.

(a) n € Q(vn). ( )
(b) n € 0(100n). ( )
(c) n € O(100n). (1 mark)
(d) logn € O(n'/10), ( )
(e) (logn)°s™ € O(n). ( )

Question 2 (5 marks)
Write down an Euler walk for the following graph.

3 2

Question 3 (5 marks)
Let s > 2 be an integer. Consider a regular hexagonal arrangement of regular hexagonal
cells, with each side consisting of s cells. Consider the graph G formed by taking each
cell to be a vertex, and joining two cells by an edge if they share a side. An example is
shown below for s = 3, where the black lines show the arrangement of cells and the red
dotted lines show the edges of G;.
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Give a formula for the number of edges in G, in terms of s. You may use the fact that
G, has 3s? — 3s + 1 vertices. (You do not need to show your working — only your final
answer will be marked. You may wish to check that your answer is correct when s = 2.)

Question 4 (5 marks)
Consider a depth-first search in the following graph starting from vertex 1.

In the implementation of depth-first search given in lectures, we say vertex 7 is explored
when explored[i] is set to 1. (For example, the start vertex is explored first.) Which
vertex will be explored sixth if the start vertex is 47 Assume that whenever the search
has a choice of two or more vertices to visit next, it picks the vertex with the lowest

number first.

Page 3 of 11 Turn Over/. ..



Question 5 (5 marks)
Consider the graph G and the matching M C E(G) shown below, where M is drawn
with blue dashed lines.

Write down an augmenting path for M in G.

Question 6 (5 marks)
Consider the “unoptimised” union-find data structure presented in lectures, in which
a sequence of n operations has a worst-case running time of ©(nlogn) rather than
©(na(n)). Let G be the graph of such a data structure initialised with the following
commands:

MakeUnionFind([8]);
Union(1, 2);

(a) How many components does G have? (2 marks)
(b) What is the maximum depth of any component of G? (Remember that depth is
the greatest number of edges from the root to any leaf.) (3 marks)

Question 7 (5 marks)
Let G = (G,cE,cy,s,t) be a vertex flow network with |V (G)| = 100. In lectures, we
covered a way of finding a maximum flow in G by applying the Ford-Fulkerson algorithm
to a new flow network (H, ¢, s',t'). How many vertices will H have, in this case? Choose
one of the following options.

A. 98.
B. 100.
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102.
198.
200.
202.

G. None of the above, or it’s impossible to tell.

o =H DA

Question 8 (5 marks)
Which of the following trees T, ..., T5 are valid red-black trees? (In case you are unable
to distinguish the colours, the red nodes are drawn as squares and the black nodes are
drawn as circles.)

Question 9 (5 marks)
Consider an instance of interval scheduling with interval set

R ={(1,3),(2,6),(4,9), (5,6), (6,11), (7,8), (9,11), (10,12), (11, 12), (11, 13)}.

(a) When the greedy interval scheduling algorithm discussed in lectures is run on this
input, which interval will it choose third? (3 marks)
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(cont.)

(b) What is the size of a maximum compatible set? (2 marks)

Question 10 (10 marks)
Consider the edge-weighted directed graph below, pictured part of the way through
executing the Bellman-Ford algorithm to find the distances d(v, v3) for all vertices v, i.e.
the single-sink version of the algorithm with sink v3. The current bounds on distance
recorded by the algorithm are written inside each vertex. The edges currently selected
by the algorithm are drawn thicker, dotted, and in blue.

Carry out one further iteration of the Bellman-Ford algorithm — that is, updating each
vertex exactly once — processing the vertices in the order vy, vy, ..., v19. After carrying
out this iteration:

(a) What is the weight of v,? (2 marks)
(b) What is the weight of vg? (2 marks)
(c) What is the weight of v1? (2 marks)
(d) What is the currently-stored path from vs to v (again, after carrying out the

iteration)? (2 marks)

(e) Is another iteration of the algorithm required to achieve accurate distances to v;?
(2 marks)
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Question 11 (10 marks)

You are trying to get a high score in the popular video game Tambourine Hero. In
this game, you score points by shaking your tambourine in time to a song playing in
the background. After playing certain beats of the song, you are awarded “star power”;
your stored star power is an integer between 0 and 100. At any time when you have 50
or more star power, you can “activate star power”. You will then lose star power at a
rate of one point per beat until you run out, at which point it is deactivated; while star
power is activated, you will earn double points. Any extra star power you are awarded
over 100 points is wasted.

Formally, a song is a series of beats by, ...,b;.. Each beat b; is a pair (p;, s;) of p; points
and s; star power, where p; and s; are non-negative integers. Let P; be your total points
after beat 7, and let S; be your total star power after beat 7. Initially, Py = Sy = 0.
Subsequently, after beat ¢ > 1,

7

_ ) Pio1+2p; if star power active,
P,_1+p; otherwise.

7

_ Jmin(100, S;_1 +s;) — 1  if star power active,
N min (100, S;_1 + s;) otherwise.

After each beat, if S; > 50 and star power is not active, you may choose to activate
star power before the next beat. It then stays active until the end of the next beat ¢
with S; = 0. Fill in the blanks in the following dynamic programming algorithm,
which outputs a list of the beats on which to activate star power in order to achieve the
maximum possible score.

(Don’t copy the whole algorithm out, just write what should go in each blank! Each
blank should contain a single expression, e.g. max(b,c) or next[b|[s][a]. Two marks will
be awarded per blank correctly filled in.)

Algorithm: BEATAMBOURINEHERO

1 Let next[b][s][a], score[b][s][a] +- 0 for all 0 < b < ¢, all 0 < s < 100, and all a € {0,1}.
2 forb=t—1 to0do
3 for s =1 to 100 do

4 Let new_s_inactive « .

5 Let inactive_score < pp + score[b + 1][new_s_inactive][0].

6 Let activating_score < pp + score[b + 1][new_s_inactive][1] if s > 50, and activating_score + —1
otherwise.

7 Let score[b][s][0] + max(inactive_score,activating_score).

8 Let score[b][s][1] « 2pp + score[b+ 1][new_s_inactive — 1][____ | if new_s_inactive > 2, and
scorel[b][s][1] < 2pp + score[b + 1]{0][0] otherwise.

9 If activating_score > inactive_score, let next[b][s][0] = 1.

10 If new_s_inactive > 2, let next[b][s][1] = 1.

11 Let active <~ 0 and s < 0.
12 forb=0tot—1do

13 If =0 and = 1, print “Activate star power after beat b”.
14 Let s < min(100, s + sp41) — 1 if active = 1 and s < min(100, s + sp41) otherwise.
15 Let active < next[b+ 1][s][ ]

Question 12 (5 marks)
A Hamilton path in a graph G is a path containing every vertex, i.e. a Hamilton cycle
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(cont.)

minus an edge. If G is a graph and z,y € V(G), we define HP(G, z, y) to be the problem
of deciding whether or not G contains a Hamilton path from z to y, so (G,z,y) is a Yes
instance if such a path exists and a No instance otherwise. Likewise, we define HC(G)
to be the problem of deciding whether or not G contains a Hamilton cycle.

(a) Is it true that both HP and HC are decision problems? (1 mark)
(b) Is it true that both HP and HC are in NP? (2 marks)
(c) Is it true that if we require every vertex in the input graph G to have degree at

least |V (G)|/2, then HC is in P? (You may assume P # NP.) (2 marks)

Question 13 (5 marks)
Consider the following reduction between the problems HC and HP introduced in Ques-
tion 12. Let G be an instance of HC. For every edge {z,y} € E(G), run an algorithm
(or oracle) for HP with inputs G —{z, y}, z, and y, where G —{z, y} is the graph formed
from G by removing {z,y} from E(G) and leaving V(G) unchanged. If any of those
algorithms output Yes, then return Yes; otherwise, return No.

(a) Is this a reduction from HC to HP, or a reduction from HP to HC? (3 marks)

(b) Is this a Karp reduction, or a Cook reduction? (2 marks)
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Section 2 — Long-answer questions (75 marks total)

Question 14 (5 marks)
Give an example of a graph which contains a length-5 cycle as a subgraph, but not as
an induced subgraph.

Question 15 (15 marks)

You are running a long-haul trucking company. You have a fixed number of vehicles
which transport material between a set of cities C4, ..., Cg. For all ¢ € [k], you currently
have t; > 0 trucks in city C;. Over the course of the day, each truck in city C; can haul
a load to any other city C; with total profit p; ; (after accounting for fuel costs and so
on). Each city contains a SimplifyTheProblem Inc. depot at which your trucks all stop.
These depots handle loading, unloading, and various administrative tasks, but the depot
in city C; is only under contract to receive and unload 7; > 1 trucks per day; thus you
must avoid sending more than T; trucks to city C;. Assume that between travel, loading,
and unloading, each trip between any pair of cities takes the full day.

Your goal is to choose destinations for your trucks to maximise your total profit for
today without any regard for the future. (Coincidentally, you also invest heavily in
fossil fuels and cryptocurrencies.) Formulate this as a linear programming problem and
give a brief explanation of what your variables represent and why your constraints and
objective function are appropriate.

Question 16 (10 marks)
Explain briefly why the reduction between HC and HP of Question 13 is valid. (A good
answer here will likely be no longer than one paragraph, and certainly no longer than
two paragraphs.)

Question 17 (30 marks)
Solve two from the following four questions (15 marks each). If you attempt more
than two, you will not gain any extra credit, and only the first two questions
attempted will be marked. If you do not wish one of your attempts to be
marked, cross it out clearly along with all working.

(a) Let G be a graph, let M be a matching in G of size 50, and let M* be a maximum
matching in G. Suppose that the symmetric difference of M and M* contains
exactly exactly 6 components. What are the possible sizes of M*? Briefly explain
your answer. (Hint: You may find it helpful to use ideas from the proof of Berge’s
lemma.)

(b) Let G = (V, E) be a connected graph with edge weights given by w: E — R. You
may assume that every edge gets a different weight. Let C' be a cycle in G, and let
e be the highest-weight edge in C. It can be shown that no minimum spanning tree
of G contains e.
Using this fact or otherwise, give an algorithm which, given an n-vertex connected
graph G = (V, E) in adjacency list format with |E| = n + 50, outputs a minimum
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(cont.)

spanning tree in O(n) time. Briefly explain why your algorithm works and why it
runs in O(n) time.

(c) John is trying to come up with an algorithm to test whether two connected graphs
G1 = (W1, Ey) and G5 = (V3, E») are isomorphic in polynomial time, and comes up
with the following.

Algorithm: BADISOTEST

1 for d=0 ton do
L if G1 doesn’t contain the same number of degree-d vertices as G2 then

w N

L Return No.

'S

Let A be the maximum degree of G;.
Let v be an arbitrarily-chosen vertex of degree A in Gi.
Using BFS, let L;(v) = {z € Vi: d(v,z) =i in G1} for all 4 € [n].
for w € V, of degree A in G2 do
Using BFS, let L;(w) = {z € V2: d(w,z) =1 in Gz} for all i € [n].
if for alli,d € [n], L;(v) contains the same number of degree-d vertices in G1 as L;(w) contains in G2 then
L Return Yes.

o © o N O«

=

11 Return No.

Give two connected graphs G; and G2 which are not isomorphic, but which have
the property that BADISOTEST(G, Gs) is guaranteed to incorrectly return Yes, no
matter how v is chosen. Briefly explain why BADISOTEST(G1, G2) always returns
Yes. (You do not have to explain why G; and G5 are not isomorphic.)

(d) In this question, we work with a variant of SAT in which variables cannot be
negated. Given literals a, b and ¢, which need not be distinct, an even clause
EVEN(z,y, z) evaluates to True if and only if either zero or two of z, y and 2
evaluate to True. A width-8 positive OR clause is an OR clause of three variables
(i.e. un-negated literals). A positive even formula is a conjunction of even clauses
and width-3 positive OR clauses. For example,

EVEN(a, -b,c) AEVEN(a,a,d) A (a VbV e) ANEVEN(c,d, e).

is a positive even formula, but (—a V b) is not due to both the negated variable and
the fact that the clause only contains two variables. The decision problem POS-
EVEN-SAT asks whether a positive even formula (given as the input) is satisfiable,
in which case the desired output is Yes.

i. Give a Karp reduction from POS-EVEN-SAT to 3-SAT and briefly explain why
it works.

ii. Give a Karp reduction from 3-SAT to POS-EVEN-SAT and briefly explain why
it works.

Question 18 (15 marks)
Choose one of the three following problems to solve. If you attempt more than one,
you will not gain any extra credit, and only the first question attempted will
be marked. If you do not wish one of your attempts to be marked, cross it
out clearly along with all working.
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(a)

(b)

(cont.)

For any connected graph G, we say that a vertex v € V(QG) is outside the core if G—v
is connected. Prove that any connected graph G with at least two vertices contains
at least one vertex outside the core. (One possible approach uses induction.)

Consider a barter economy with goods G, ..., G;. For all ¢ and j, you can directly
trade z; units of G; for y; units of G;; this is expressed as the ratio r;; = z;/y;.
Notice that you can trade one unit of G; for r;;7;; units of Gy, by first trading G;
for G; and then trading G; for Gy; the same holds for longer chains of trades. You
are interested in becoming obscenely wealthy, and so you are looking for a trading
cycle C = z;, ... x;x; such that the product 7;, 4, ...7i, .7, i, Of all the ratios is
strictly greater than 1, leaving you with more goods G; than you started with. We
call such a cycle an arbitrage cycle. Give a polynomial-time algorithm to decide
whether an arbitrage cycle exists, and explain why it works.

(Hint: Recall that distances are not well-defined in a directed graph with cycles of
negative total weight. In fact, you can check whether such cycles exist in polynomial
time by running the Bellman-Ford algorithm for one extra iteration and seeing
whether the weights change — if they do, then the graph contains a negative-weight
cycle.)

You are running a polyamorous dating site, and are finding that the problem of
finding compatible groups seems to be harder to solve than finding large matchings
in a bipartite graph. Consider the following highly simplified version of the problem,
in which each person is only interested in a closed relationship with exactly two
others. You are given a set S of people, and a set T" of compatible triples of people.
We say D C T is a dating arrangement if t; Nty = () for all distinct t1,t, € D;
you seek a dating arrangement which is as large as possible. Prove that even this
simplified version of the problem is still NP-hard to solve exactly. You don’t need
to spell out every detail of the argument, but it should be clear how and why your
reduction works.

Hint: Try reducing from 3-SAT. You will find gadgets similar to the ones shown
below very useful, where the dots represent people and the triangles represent triples
inT.
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