
UNIVERSITY OF BRISTOL

Not a Real Examination Period

Department of Computer Science

2nd Year Practice Paper for the Degrees of
Bachelor in Computer Science

Master of Engineering in Computer Science
Master of Science in Computer Science

COMS20010
Algorithms II

TIME ALLOWED:
2 Hours

Answers

Other Instructions

1. You may bring up to four A4 sheets of pre-prepared notes with you into
the exam, but no other written materials.

2. You may use a calculator with the Faculty seal of approval if you wish.

TURN OVER ONLY WHEN TOLD TO START WRITING

Page 1 of 20

Section 1 — Short-answer questions (75 marks total)
You do not need to justify your answers for any of the questions in this section, and you
will not receive partial credit for showing your reasoning. Just write your answers down
in the shortest form possible, e.g. “A” for multiple-choice questions, “True” for true/false
questions, or “23” for numerical questions. If you do display working, circle or otherwise
indicate your final answer, as if it cannot be identified then the question will not be marked.

Question 1 (5 marks)
For each of the following statements, identify whether it is true or false.
(a) n ∈ O(n2). (1 mark)

Solution: True.

(b) n ∈ ω(log2 n). (1 mark)

Solution: True.

(c) n2 + 50n− 12 ∈ O(12n2 − n+ 100). (1 mark)

Solution: True.

(d) 5n ∈ Θ(6n). (1 mark)

Solution: False.

(e) mn2 +m2n ∈ O(m100n). (1 mark)

Solution: False.

Question 2 (5 marks)
Consider the three graphs G1, G2 and G3 shown below.

1

2

3 4

5

1

4

2 5

3

42 413

11387

3141

G1 G2 G3

For each of the following statements, identify whether it is true or false.
(a) G1 is equal to G2. (1 mark)

Solution: True.

(b) G2 is isomorphic to G2. (1 mark)

Page 2 of 20 Qu. continues . . .

(cont.)

Solution: True.

(c) G1 contains a subgraph isomorphic to G3. (1 mark)

Solution: True.

(d) G1 contains an induced subgraph isomorphic to G3. (1 mark)

Solution: False.

(e) G1 contains an Euler walk from some vertex back to itself. (1 mark)

Solution: True.

Question 3 (5 marks)
You are working on a recently-established competitor to Google Maps, and you have
been asked to estimate storage requirements for adding the small landlocked nation of
Tropico to the service. Tropico’s road network will be stored internally as a graph:
Each junction and dead end is a vertex, and the roads joining them are edges. After
doing some research, you discover that Tropico’s road network has 100 dead ends, 350
3-way junctions, 50 4-way crossroads, and one terrifying central roundabout with 20
separate exits (which you should consider as a 20-way junction). How many edges will
the resulting graph have? Choose one of the following options.

A. 645.
B. 685.
C. 1290.
D. 1370.
E. None of the above.

Solution: B — 685. By the handshaking lemma, for all graphs G we have |E(G)| =
1
2
∑

v∈V (G) d(v). Here, this expression becomes

|E(G)| = 1
2
(
100 · 1 + 350 · 3 + 50 · 4 + 1 · 20

)
= 685.

Question 4 (5 marks)
Consider a depth-first search in the following graph starting from vertex 1.

Page 3 of 20 Turn Over/. . .

1

2

3

4

5

6

7

8

9

In the implementation of depth-first search given in lectures, we say vertex i is explored
when explored[i] is set to 1. Which vertex will be explored sixth? Assume that whenever
the search has a choice of two or more vertices to visit next, it picks the vertex with the
lowest number first.

Solution: 8. DFS will traverse edges in the order:

{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 8}, {8, 6}, {6, 7}, {8, 9}.

Question 5 (5 marks)
Consider the following edge-weighted graph.

1

2 4

3

5

3

1

2

4

1 3

44

5

v1

v2

v3 v4

v5 v6

v7

v8

v9

Which of the following edges will always be selected as part of a minimum spanning
tree by Prim’s algorithm starting from v1, no matter how it breaks ties? Choose one of
the following options.

A. {v3, v5}.
B. {v6, v8}.
C. {v8, v9}.
D. More than one of these edges will always be selected.
E. None of these edges will always be selected.

Page 4 of 20

Solution: D — both {v3, v5} and {v8, v9} will always be selected. Prim’s
algorithm will first add the weight-1 edges {v1, v3}, {v3, v5} and {v1, v2} in some order.
It will then add the weight-2 edge {v3, v4}. It will then add the weight-3 edges {v4, v6}
and {v2, v7} in some order. It will then add either {v6, v8} or {v4, v9}, followed by
{v8, v9}. So {v3, v5} and {v8, v9} are always selected, and {v6, v8} may or may not be
selected depending on how the final tie is broken.

Question 6 (5 marks)
Consider the following vertex flow network with source s, sink t and flow f .

4/4

3/
4

2/
2 2/2

4/4

3/4

6/8

5/10

7/7 7/
7

7/
7

7/7

2/4

1
/1

2/5

1/
1

2/2

1/2s

a

b

c

d

e

t

f

g

h

i

j

(a) What is the value of f? (1 mark)

Solution: 10.

(b) What is f−(a)? (1 mark)

Solution: 5.

(c) Is ({s, b, e}, {a, c, d, f, g, h, i, j, t}) a valid cut? (1 mark)

Page 5 of 20 Turn Over/Qu. continues . . .

(cont.)

Solution: Yes.

(d) Give an augmenting path for f . (2 marks)

Solution: sjigabfet. This is the unique augmenting path — here is the residual
graph, with a BFS tree from s to t highlighted in red. (Here bidirected edges are
drawn as undirected.)

s

a

b

c

d

e

t

f

g

h

i

j

Question 7 (5 marks)
Which of the following CNF formulae are satisfiable?
(a) x ∨ ¬x. (1 mark)

Solution: Satisfiable, e.g. x = True.

(b) ¬a ∧ (a ∨ ¬c) ∧ (a ∨ c). (1 mark)

Solution: Unsatisfiable. a must be False to satisfy the first clause, so c must
be False to satisfy the second clause, and in that case the third clause can’t be
satisfied.

(c) (x ∨ y) ∧ (x ∨ ¬y). (1 mark)

Page 6 of 20 Qu. continues . . .

(cont.)

Solution: Satisfiable, e.g. x = y = True.

(d) (¬a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ c).
(1 mark)

Solution: Satisfiable, e.g. a = True, b = c = False.

(e) (x1∨¬x2)∧ (¬x1∨x2)∧ (x2∨¬x3)∧ (¬x2∨x3)∧ · · · ∧ (x99∨¬x100)∧ (¬x99∨x100).
(1 mark)

Solution: Satisfiable, e.g. xi = True for all i.

Question 8 (5 marks)
Context: You are attempting to steal a valuable work of art from the Tate Modern.
By using the ventilation ducts, you believe you can steal any artwork not directly in
view of a camera. With great difficulty, you have determined the number of cameras in
the building and a limited set of points where they could be mounted. You also know,
for each mounting point, which artworks a camera mounted there would protect, and
you have recorded this information in the form of a bipartite graph. Unfortunately, you
haven’t been able to narrow down the cameras’ locations exactly. You don’t want to go
to the trouble of breaking in and then leave empty-handed, so you would like to know:
Is it true that however the cameras are mounted, you will be able to steal at least one
artwork?
Problem: The ArtThief problem is defined as follows. An instance of the problem
consists of an integer k, a set A of artworks, a set P of mounting points, and a bipartite
graph G with vertex classes A and P . The answer is Yes if for all sets of camera locations
C ⊆ P with |C| = k, there exists a ∈ A which is not adjacent to any p ∈ P . Otherwise,
the answer is No. Which of the following statements has a short and simple proof?
(a) ArtThief is in NP.
(b) ArtThief is not in NP.
(c) ArtThief is in Co-NP.
(d) ArtThief is not in Co-NP.
(e) More than one of the above, or none of the above.

Solution: C — ArtThief is in Co-NP. ArtThief is a decision problem, and if
the answer is “no” then there must be an arrangement of k cameras that cover every
vertex which can be verified in polynomial time, so it is in Co-NP. There is no obvious
way of proving that ArtThief is or is not in NP, and in fact I as examiner can be
confident that any obvious proof a student comes up with is wrong, since ArtThief
is Co-NP-complete and the question reduces down to whether or not NP = Co-NP. (I
wouldn’t expect a student to prove that, though — just to notice that there is no proof
as simple as the proof of Co-NP membership.)

Page 7 of 20 Turn Over/. . .

Question 9 (5 marks)
Consider the “unoptimised” union-find data structure presented in lectures, in which
a sequence of n operations has a worst-case running time of Θ(n log n) rather than
Θ(nα(n)). Let G be the graph of such a data structure initialised with the following
commands:
MakeUnionFind([10]);
Union(3, 4);
Union(3, 5);
Union(3, 6);
Union(1, 2);
Union(1, 4);
Union(7, 1).
(a) How many components does G have? (2 marks)

Solution: 4.

(b) What is the maximum depth of any component of G? (Remember that depth is
the greatest number of edges from the root to any leaf.) (3 marks)

Solution: 2. After the first four union commands, {3, 4, 5, 6} and {1, 2} both
span depth-1 trees; they are then combined into a depth-2 tree by Union(1, 4),
and Union(7, 1) just adds another child to the root. The final components have
vertex sets {1, . . . , 7}, {8}, {9} and {10}.

Question 10 (5 marks)
You are implementing rudimentary pathfinding in a video game, trying to find the short-
est paths from a large number of enemies to the player in a maze. Which of the following
algorithms would be the most efficient choice for this situation?
(a) Breadth-first search.
(b) Depth-first search.
(c) Dijkstra’s algorithm.
(d) The Bellman-Ford algorithm.
(e) None of the above algorithms would work.

Solution: C. If the pathfinding graph has m edges and n vertices, then Dijkstra’s algo-
rithm would run in O(m log n) time no matter how many enemies there are. Breadth-
first or depth-first search would only find shortest paths from one enemy to the player
at a time, potentially requiring Θ(m) time per enemy. Bellman-Ford requires Θ(mn)
time; it is only efficient when dealing with negative-weight edges, and distances are
positive so there are no negative-weight edges in this graph.

Question 11 (5 marks)
Let T be the 2-3-4 tree below.

Page 8 of 20 Qu. continues . . .

(cont.)

1 2 3 6 8 10 12 14 16 18 20 22 23 24

5 7 11 15 19 21

9 13 17

Let U be the 2-3-4 tree formed by first using the Insert operation to add 4 into T , then
using the Delete operation to remove 15 from T .
(a) What is the path traversed on applying the Find operation to search for 3 in U?

(For example, in T , this would be (9 13 17), (5 7), (1 2 3).) (2 marks)
(b) What is the path traversed on applying the Find operation to search for 16 in U?

(3 marks)

Solution: (9 13 19), (2 5 7), (3 4) for a), (9 13 19), (17), (14 16) for b). The
insertion operation will split (9 13 17) and (1 2 3) on the way down before inserting 4
into the (3) node. The deletion operation will find the predecessor of 15, namely 14;
on its way down it will then re-fuse (9), (13) and (17), transfer from (19 21) into (15),
and fuse (14) and (16) to make (14 15 16); it will then delete 14 and overwrite 15 with
14. The final value of U is as shown below.

1 3 4 6 8 10 12 14 16 18 20 22 23 24

2 5 7 11 17 21

9 13 19

Question 12 (10 marks)
Consider the edge-weighted directed graph below, pictured part of the way through
executing the Bellman-Ford algorithm to find the distances d(v, v1) for all vertices v.
The current bounds on distance recorded by the algorithm are written inside each vertex.
The edges currently selected by the algorithm are drawn thicker, dotted, and in blue.

Page 9 of 20 Turn Over/Qu. continues . . .

(cont.)

3

1

-3

2

-1

2

-1

6 4

-1

-2

-1

4 -2

7

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10
0

3

4 1

3

2

∞

10 5

∞

Carry out one further iteration of the Bellman-Ford algorithm — that is, updating each
vertex exactly once — processing the vertices in the order v1, v2, . . . , v10. After carrying
out this iteration:
(a) What is the weight of v5? (2 marks)

Solution: 3.

(b) What is the weight of v7? (2 marks)

Solution: 9.

(c) What is the weight of v10? (2 marks)

Solution: 7.

(d) What is the currently-stored path from v7 to v1? (2 marks)

Solution: v7v9v4v3v2v1.

(e) Is another iteration of the algorithm required to achieve accurate distances to v1?
(2 marks)

Solution: Yes. The state of the algorithm after one further iteration is as shown
below.

Page 10 of 20

3

1

-3

2

-1

2

-1

6 4

-1

-2

-1

4 -2

7

v1

v2

v3 v4

v5

v6

v7

v8 v9

v10
0

3

4 1

3

2

9

10 5

7

The next iteration of Bellman-Ford will update the distance of v8 from 10 to 5.

Question 13 (10 marks)
Context: You are a lowly apprentice to the master dwarven blacksmith Cheery Little-
bottom, and you would like to use the facilities in your spare time to reforge the dread
blade of A’Neem’Ay before the sacred festival of Jankon; this will allow you take over
the world and avoid ever having to do Cheery’s laundry again. Unfortunately, while
Cheery’s forge contains many anvils, most of them are in use most of the time, and as
an apprentice you are unable to book any anvil time of your own — you must work in
the gaps left by more important people. Worse, before you can make use of an anvil,
you must spend a full day secretly dedicating it to A’Neem’Ay, and only one anvil can
be dedicated this way at once. The one piece of good news is A’Neem’Ay has given you
the ability to see the future, and you know in advance how much time you’ll be able to
get at each anvil on each day.
Problem: You are given a set of k anvils A1, . . . , Ak, and a time limit of D days.
For each anvil Ai, you are also given a length-D list hi (indexed from 1) such that
hi[j] ∈ {1, . . . , 16}. For all j ∈ [D], on day j, if you are currently at anvil i, then you
can either spend hi[j] hours working at anvil Ai, or spend the full day switching to a
different anvil. Your goal is to maximise your total time spent working, across all anvils.
Fill in the blanks of the following dynamic programming algorithm, which solves the
problem in O(kD) time. Hint: This algorithm makes use of a space-saving technique

Page 11 of 20 Turn Over/Qu. continues . . .

(cont.)

that was also used in the Bellman-Ford algorithm.
(The first four blanks are worth two marks each, the last two are worth one mark each.
Don’t copy the whole algorithm out, just write what should go in each blank!)

Algorithm: WorldConquest
1 Let actions[i]← “” for all i ∈ [k].
2 Let hours[i], temp[i]← 0 for all i ∈ [k].
3 for z = 1 to d do
4 for i = 1 to k do
5 temp[i]← hours[i].

6 for i = 1 to k do
7 Let foo← + .
8 Let bar← {temp[x] : x ∈ [k]}.
9 Let ℓ be such that temp[ℓ] = .

10 if foo > bar then
11 hours[i]← foo.
12 Add “Work on the sword. ” to the of actions[i].

13 else
14 hours[i]← bar.
15 Add “Switch to anvil ℓ. ” to the of actions[i].

16 for i = 1 to k do
17 Add “Start at anvil i. ” to the start of actions[i].

18 Let ℓ be such that hours[ℓ] = max{hours[i] : i ∈ [k]}.
19 Return actions[ℓ].

Solution: temp[i] and hi[D + 1 − z] (in some order), max, bar, start, and
start. The final algorithm is:

Algorithm: WorldConquest
1 Let actions[i]← “” for all i ∈ [k].
2 Let hours[i], temp[i]← 0 for all i ∈ [k].
3 for z = 1 to d do
4 for i = 1 to k do
5 temp[i]← hours[i].

6 for i = 1 to k do
7 Let foo← temp[i] + hi[D + 1− z].
8 Let bar← max{temp[x] : x ∈ [k]}.
9 Let ℓ be such that temp[ℓ] = bar.

10 if foo > bar then
11 hours[i]← foo.
12 Add “Work on the sword. ” to the start of actions[i].

13 else
14 hours[i]← bar.
15 Add “Switch to anvil ℓ. ” to the start of actions[i].

16 for i = 1 to k do
17 Add “Start at anvil i. ” to the start of actions[i].

18 Let ℓ be such that hours[ℓ] = max{hours[i] : i ∈ [k]}.
19 Return actions[ℓ].

It’s based on the recurrence

T (i, z) = max
(
{T (x, z − 1) : x ∈ [k]} ∪ {hi[z] + T (i, z − 1)}

)
,

T (i, 0) = 0

Page 12 of 20 Qu. continues . . .

(cont.)

for the maximum possible number of hours spent on the sword starting at anvil i with
z days to go until Jankon. However, in calculating the values of T (i, z) for some fixed
z, we only need the values of T (i, z− 1), so rather than storing the whole table we only
store the z − 1’st row (in temp) and the z’th row (in hours).

Page 13 of 20 Turn Over/. . .

Section 2 — Long-answer questions (75 marks total)

In this section, you should give the reasoning behind your answers unless otherwise
specified — you will receive credit for partial answers or for incorrect answers with
sensible reasoning.

Question 14 (10 marks)
Consider the directed graph G below.

v1

v2v3

v4

v5

v6 v7

v8

(a) Express G in adjacency matrix form. (5 marks)

Solution: Taking the i’th row/column of the matrix to represent vi, we obtain

0 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0

(b) Express G in adjacency list form. (5 marks)

Page 14 of 20

Solution: The lists should be:

v1 : [v2]
v2 : [v3, v6, v7, v8]
v3 : [v4]
v4 : [v2, v5]
v5 : [v6]
v6 : [v4, v7]
v7 : [v2, v8]
v8 : [v1].

Question 15 (5 marks)
The Bacon number of an actor is defined as follows. Kevin Bacon has a Bacon number
of zero. The Bacon number of another actor is the shortest chain of co-stars linking
them to Kevin Bacon. For example, Elvis Presley was in Change of Habit with Edward
Asner, and Edward Asner was in JFK with Kevin Bacon, so Elvis Presley has a Bacon
number of at most 2. Elvis was never in any movies with Kevin directly, so he has a
Bacon number of exactly 2. Given API access to IMDB, briefly summarise an efficient
algorithm to output the Bacon number of a given actor by reducing to a problem solved
in the course. You do not need to prove your algorithm works.

Solution: Let A be the set of all actors listed on IMDB. Let

E = {i, j : actors i and j have appeared in a movie together}.

Then the Bacon number of an actor is precisely their distance from Kevin Bacon in the
graph (A,E), which can be queried using the IMDB API. The problem can therefore
be solved with O(|A|2) API queries using breadth-first search.

Question 16 (15 marks)
You have been placed in charge of overseeing plywood distribution in the USSR. You are
given a list of production facilities F1, . . . , Fn and destinations D1, . . . , Dm. Each facility
Fi can produce at most pi units of plywood per day, and each destination Dj requires at
least rj units of plywood per day. The cost of moving one unit of plywood from facility
Fi to destination Dj is ci,j, and you may assume this scales linearly (so that e.g. the
cost of moving half a unit is ci,j/2). You wish to ensure that the requirements of each
destination are met while spending as little on transportation as possible. Formulate
this as a linear programming problem. (Your answer does not have to be in standard
form, and you do not have to justify it.)

Page 15 of 20 Turn Over/. . .

Solution: Let xi,j be the number of units of plywood moved from facility Fi to desti-
nation Dj each day. We wish to minimise ∑n

i=1
∑n

j=1 ci,jxi,j. Our constraints are:

• We cannot transport a negative amount of plywood: xi,j ≥ 0 for all i, j.

• Each factory Fi can produce at most pi plywood per day: ∑m
j=1 xi,j ≤ pi for all

i ∈ [n].

• Each destination Dj needs at least rj plywood per day: ∑n
i=1 xi,j ≥ rj for all

j ∈ [m].

Question 17 (30 marks)
Solve two from the following four questions (15 marks each). If you attempt more
than two, you will not gain any extra credit, and only the first two questions
attempted will be marked. If you do not wish one of your attempts to be
marked, cross it out clearly along with all working.
(a) The Travelling Salesman Problem (TSP) is defined as follows. We are given a list

of n cities and, for each unordered pair {i, j} of distinct cities, the cost c(i, j) of
travelling between i and j. (These costs can be arbitrary positive integers.) We are
also given an integer k. We must output Yes if there is a way to travel to each city
exactly once, then return back to the starting point, with total cost at most k.
We call this a round trip. Otherwise, we must output No.

As an example, the input may be the set of cities {Amsterdam,Baghdad,Cairo,Dublin},
the cost function

c(Amsterdam,Baghdad) = 175, c(Amsterdam,Cairo) = 95,
c(Amsterdam,Dublin) = 24, c(Baghdad,Cairo) = 140,

c(Baghdad,Dublin) = 250, c(Cairo,Dublin) = 122,

and the integer k = 500. The round trip from Amsterdam to Baghdad to Cairo to
Dublin and back to Amsterdam costs 175 + 140 + 122 + 24 = 461. So there is a
round trip with cost at most 500, and the desired output is Yes.
Prove that the Travelling Salesman Problem is NP-complete (under Karp reduc-
tions). You may use the fact that the problem HC of deciding whether or not a
graph contains a Hamilton cycle is NP-complete.

Solution: The desired output is Yes if and only if there is a round trip with cost
at most k. Given a sequence of cities, we can verify this property in polynomial
time — we simply need to check the sequence for duplicates and sum up the costs.
By the definition of the NP class, it follows that the Travelling Salesman Problem
is in NP.
Let G = (V,E) be an instance of HC, i.e. an undirected n-vertex graph. We define
a corresponding instance f(G) of TSP as follows. Let the set of cities be V . For

Page 16 of 20 Qu. continues . . .

(cont.)

each distinct i, j ∈ V , let

c(i, j) =
1 if {i, j} ∈ E,

n+ 1 otherwise.

Let k = n. Then it is easy to compute (V, c, k) in polynomial time, and (V, c, k)
is a Yes-instance of TSP if and only if there is a round trip of cost at most n.
This holds if and only if every successive pair of cities in the round trip has cost
1, which holds if and only if the round trip is a Hamilton cycle in G. Thus f is a
Karp reduction from HC to TSP.

(b) Consider the following greedy algorithm to find a large independent set in a graph.
Algorithm: GreedyIS(G, k)
Input : A graph G.
Output: An independent set of G.

1 begin
2 Let output← ∅.
3 foreach v ∈ V (G) do
4 if output ∪ {v} is an independent set then
5 output← output ∪ {v}.

6 Return output.

Fix an integer∆ > 0. If G has n vertices and maximum degree∆, then how large an
independent set is GreedyIS guaranteed to output? Your answer should include
both an upper bound and a lower bound, and a brief justification of each.

Solution: n/(∆ + 1). A vertex is added to output if there is no vertex already
adjacent to it in output already. Hence each vertex v that GreedyIS adds to
output prevents at most d(v) ≤ ∆ further vertices from being added to output.
Thus |output|+∆ · |output| ≥ n. Rearranging, we obtain |output| ≥ n/(∆+1) as
required. Conversely, if we take G to be a union of cliques of size ∆+1, then any
independent set can contain at most one vertex from each clique, so a maximum
independent set contains only n/(∆ + 1) vertices.

(c) Consider the following alternative greedy algorithm to

Page 17 of 20 Turn Over/. . .

Algorithm: BetterGreedyIS(G, k)
Input : A graph G.
Output: An independent set of G.

1 begin
2 Sort V (G) in increasing order of degree. Write V (G) = {v1, . . . , vn}, with

d(v1) ≤ · · · ≤ d(vn). Let output← ∅.
3 for i = 1 to n do
4 if output ∪ {vi} is an independent set then
5 output← output ∪ {vi}.

6 Return output.

Prove that BetterGreedyIS may still output an independent set of size O(1)
even if G contains an independent set of size Ω(n).

Solution: There are many ways of doing this — here’s one. Consider an input
graph G = (V,E) of the following form. Let t be an arbitrary (large) integer.
We have V = {a, b} ∪ A ∪ B, where A and B are t-vertex sets. We form E by
joining a to every vertex in A, b to every vertex in B, and every vertex in A to
every vertex in B. Then d(a) = d(b) = t, and d(v) = t + 1 for all v ∈ A ∪ B.
Thus BetterGreedyIS will pick first a, then b, then be unable to pick any other
vertices, returning a set of size 2 ∈ O(1). Meanwhile, A is an independent set of
size t = (|V | − 2)/2 ∈ Ω(|V |).

Question 18 (15 marks)
Choose one of the three following problems to solve. If you attempt more than one,
you will not gain any extra credit, and only the first question attempted will
be marked. If you do not wish one of your attempts to be marked, cross it
out clearly along with all working.
(a) Consider the following problem, which we call Approx-SAT. The input is a logical

formula F in conjunctive normal form. The desired output is Yes if there is an
assignment of truth values to variables which satisfies at least two thirds of F ’s
OR clauses, and No otherwise. Prove that Approx-SAT is NP-complete under Karp
reductions.

Solution: Given a proposed assignment, we can easily check whether it satisfies
at least two thirds of F ’s OR clauses, so Approx-SAT is in NP. It remains to show
that Approx-SAT is NP-hard under Karp reductions. We do so by giving a Karp
reduction from SAT to Approx-SAT. Let F be an arbitrary instance of SAT, with
k OR clauses. Then we form an instance F ′ of Approx-SAT by introducing new
variables x1, . . . , xk, and taking

F ′ = F ∧ x1 ∧ (¬x1) ∧ x2 ∧ (¬x2) ∧ · · · ∧ xk ∧ (¬xk).

This can obviously be done in polynomial time. Now, F ′ is a Yes instance of
Approx-SAT if and only if there is an assignment satisfying at least 2k of its 3k

Page 18 of 20 Qu. continues . . .

(cont.)

OR clauses. Any assignment satisfies exactly k of the new (trivial) OR clauses, and
F only has k OR clauses to begin with, so this can only happen if F is satisfied.
Hence F ′ is a Yes instance of Approx-SAT if and only if F is a Yes instance of
SAT, as required.

(b) Let G = (V,E) be a bipartite graph with bipartition (A,B). Let a and b be positive
integers, and suppose that every vertex in A has degree a and every vertex in B
has degree b. What is the average degree 1

|V |
∑

v∈V d(v) of G’s vertices, in terms of
a and b? (Note that your answer should not depend on |A| or |B|.)

Solution: Double-counting the number of edges in G gives |E| = a|A| = b|B|.
Thus

1
|V |

∑
v∈V

d(v) = a|A|+ b|B|
|V |

= 2a|A|
|V |

.

Moreover, we have |V | = |A|+|B|, so since a|A| = b|B| we have |V | = (1+a/b)|A|;
hence

1
|V |

∑
v∈V

d(v) = 2a|A|
(1 + a

b
)|A| =

2ab
a+ b

.

(c) Let G = (V,E) be a graph. A dominating set in G is a subset X ⊆ V such that for
all v ∈ V \X, we have {x, v} ∈ E for some x ∈ X. In other words, every vertex of
G is either contained in X or joined to X by an edge (or both). DS is the problem
which asks: Given a graph G and an integer k, does G contain a dominating set of
size at most k? Give a Karp reduction from VC to DS and briefly explain why it
works. (Hint: Among other things, you will need to insert a vertex into the middle
of each of G’s edges.)

Solution: Let (G, k) be an instance of VC. Then we form an instance (H, k) of
DS as follows. First, remove all degree-zero vertices of G. Next, replace each edge
e = {x, y} ∈ E by a triangle {{x, ve}, {ve, y}, {x, y}, where ve is a new vertex
specific to e. Then we claim that for all k, G has a vertex cover of size at most k
if and only if H has a dominating set of size at most k, so the map from (G, k) to
(H, k) is the claimed Karp reduction.
Suppose X ⊆ V is a vertex cover of G with |X| ≤ k. If X contains any degree-zero
vertices, we may remove them to form a new vertex cover X ′ ⊆ X. Then every
edge of G has at least one endpoint in X ′, so every vertex ve in H is adjacent to
a vertex in X ′. Moreover, every vertex in H is incident to at least one edge, and
hence either in X ′ or adjacent to a vertex in X ′. Thus X ′ is a dominating set of
H of size at most k.
Conversely, suppose Y ⊆ V is a dominating set of H with |Y | ≤ k. If Y contains
any vertices ve /∈ V , then we may replace them with one of ve’s endpoints to form
a new dominating set Y ′ with |Y ′| ≤ |Y |. Then Y ′ ⊆ V , and every vertex ve is
adjacent to a vertex in Y ′, so Y ′ is a vertex cover of G of size at most k.

Page 19 of 20 Turn Over/Qu. continues . . .

(cont.)

(Another approach would be to form H by replacing each edge of G by a length-2
path rather than a triangle, and adding a new vertex adjacent to every vertex in
V . Then G will have a vertex cover of size at most k if and only if H has a vertex
cover of size at most k + 1. There are probably other approaches that work as
well.)

Page 20 of 20

END OF PAPER

