
COMS20010 — Problem sheet 1

This problem sheet covers week 1, focusing on induction and O-notation. You don’t have to finish the
problem sheets before the class — focus on understanding the material the problem sheet is based on. If
working on the problem sheet is the best way of doing that, for you, then that’s what you should do, but
don’t be afraid to spend the time going back over the quiz and videos instead. (Then come back to the sheet
when you need to revise for the exam!)

As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

1 Big-O Notation

1. (a) [⋆] Show that 5n ∈ O(n2) from the definition.

Solution: Pick C = 1, n0 = 5. Then, for all n ≥ n0 = 5 we have 5n ≤ n2 = C · n2.

(b) [⋆⋆] Show that 2n2 + 3n+ 1 ∈ O(n2 + 5n+ 4) from the definition.

Solution: Pick C = 5, n0 = 1. Then, we have

2n2 + 3n+ 1 ≤ 5 · (n2 + 5n+ 4) = 5n2 + 25n+ 20.

And this clearly holds for all n ≥ n0 = 1.

(c) [⋆⋆⋆]

i. Show that
n∑

i=1

i4 ∈ O(n5).

Solution: We will answer this by finding an upper bound for the left-hand side, noting
that it doesn’t matter how loose our bound is.

Page 1 of 8



For each i4 term in the sum we have i ≤ n, and so i4 ≤ n4. This gives us

n∑
i=1

i4 ≤
n∑

i=1

n4 = n · n4 = n5.

We now use the standard property of O-notation that if f(n) ≤ g(n) for all sufficiently large
n, then f(n) ∈ O(g(n)); this follows from the definition of O-notation, and is mentioned
on the week’s quiz.

ii. Show that
n∑

i=1

i4 ∈ Ω(n5).

Solution: We discard the smaller terms in the sum, then bound the rest below to get

n∑
i=1

i4 ≥
n∑

i=⌈n/2⌉

i4 ≥
n∑

i=⌈n/2⌉

⌈n/2⌉4 ≥ (n− ⌈n/2⌉+ 1)⌈n/2⌉4.

We need to be a little careful here because of the ceilings — it’s easy to accidentally write
something that’s false for n = 1, say. However, it is always true that x + 1 ≥ ⌈x⌉ ≥ x for
all x ≥ 0. Thus

n∑
i=1

i4 ≥
(
n− ⌈n/2⌉+ 1

)
⌈n/2⌉4 ≥ (n/2)5 ≥ n5/32.

Since n5/32 ∈ Ω(n5), the result again follows from standard properties of O-notation.
Notice that there’s nothing magical about splitting the sum at i = ⌈n/2⌉; we could split
it at i = ⌈αn⌉ or ⌊αn⌋ for any α ∈ (0, 1) and a very similar argument would still have
worked, with slightly different constants. The key point is: when you’re trying to bound
a sum below, and you don’t care about constant factors, feel free to throw half the terms
away.

iii. Show that
n∑

i=1

i4 ∈ Θ(n5).

Hint: What does Θ mean in terms of O and Ω?

Solution: We know f(n) ∈ Θ(g(n)) if and only if f ∈ O(g(n)) and f ∈ Ω(g(n)). The
result then immediately follows from parts (i) and (ii).

(d) [⋆⋆] Show that 3n ∈ 2O(n).

Solution: We have
3n = 2n log2(3) ∈ 2O(n).

(e) [⋆⋆] Show that n+ log n ∈ O(n).

Page 2 of 8



Solution: Here we will use the the general property that if f(n) ∈ O(h(n)) and g(n) ∈ O(h(n))
then

O(f(n) + g(n)) ∈ O(h(n)).

(This is shown in the Blackboard quiz.) Observe that n ∈ O(n) and log(n) ∈ O(n), which gives
us

O(n+ log(n)) ∈ O(n).

2. Why don’t the following alternative definitions for O-notation (denoted by O†) mean the same thing as
the usual definition? For each one, give an example of functions f and g such that f(n) ∈ O(g(n)) but
f(n) /∈ O†(g(n)), or such that f(n) ∈ O†(g(n)) but f(n) /∈ O(g(n)).

(a) [⋆⋆] f(n) ∈ O†(g(n)) if there exists n0 > 0 such that for all n ≥ n0, f(n) ≤ g(n).

Solution: Take g to be smaller than f by a constant factor. For example, n ∈ O(n/3), but
n /∈ O†(n/3), since n > n/3 for all n ≥ 1.

(b) [⋆⋆] f(n) ∈ O†(g(n)) if there exists C > 0 such that f(n) ≤ Cg(n) for all n ≥ 0.

Solution: Take g to grow faster than f , but be negative or zero for some small n. For example,
n ∈ O(n2 − 4), but n /∈ O†(n2 − 4), since 2 > C(22 − 4) for all C > 0. As another example,
n+ 10 ∈ O(n2), but n+ 10 /∈ O†(n2) since 0 + 10 ≥ C · 02 for all C > 0.

(c) [⋆⋆⋆] f(n) ∈ O†(g(n)) if there exists C > 0 and a sequence of integers n0 ≤ n1 ≤ n2 ≤ . . . such
that f(ni) ≤ Cg(ni) for all i.

Solution: Take f to oscillate wildly, growing faster than g at its peaks and slower at its
troughs. For example, n2(1 + sin(πn)) ∈ O†(1) since it is equal to zero whenever n is odd, but
n2(1+ sin(πn)) /∈ O(1) since it is equal to n2 whenever n is even. Note that you didn’t have to
think of the trick with sin(πn) — for example, by the same reasoning, it would also be valid to
take g(n) = 1 and

f(n) =

{
n2 if n is an even integer,

1 otherwise.

It’s not a nice function, but it doesn’t have to be a nice function to be a valid counterexample!

3. (a) [⋆⋆⋆] Prove that if g(n) ∈ ω(1) and f(n) ∈ o(g(n)), then 2f(n) ∈ o(2g(n)). (This was used in lectures
as a way of dealing with unpleasant exponential functions.)

Solution: Let C > 0 be arbitrary; then we must prove that 2f(n) ≤ C · 2g(n) whenever n is
sufficiently large. Since f(n) ∈ o(g(n)), we have f(n) ≤ g(n)/2 for all sufficiently large n; say
n ≥ n1(C). When this holds, we have

2f(n) ≤ 2g(n)/2 = 2g(n) · 2−g(n)/2.

Since g(n) ∈ ω(1), when n is sufficiently large (say n ≥ n2(C)), we have g(n) ≥ −2 logC. When
this holds, it follows that

2f(n) ≤ 2g(n) · 2logC = C · 2g(n).

We have therefore proved that for all C > 0, 2f(n) ≤ C ·2g(n) whenever n ≥ max{n1(C), n2(C)},
so we’re done.

Page 3 of 8



(b) [⋆⋆] What happens if g(n) ∈ o(1)?

Solution: In this case the result fails. For example, taking f(n) = 1/n2 and g(n) = 1/n, we
have f(n) ∈ o(g(n)), but 1 ≤ 2f(n), 2g(n) ≤ 2 for all n, so 2f(n) /∈ o(2g(n)).

(c) [⋆⋆] Prove that it is not true that if 2f(n) ∈ o(2g(n)) then f(n) ∈ o(g(n)).

Solution: Take f(n) = n and g(n) = 2n. Then for all C > 0, for all n ≥ − logC, we have

2f(n) = 2n = 2−n · 2g(n) ≤ C · 2g(n),

so 2f(n) ∈ 2o(g(n), but we do not have f(n) ∈ o(g(n)).

2 Induction

4. (a) [⋆⋆] Prove by induction that for all n ≥ 1,

n∑
i=1

1

i(i+ 1)
=

n

n+ 1
.

Solution: For the base case, taking n = 1, we have

1∑
i=1

1

1 · 2
=

1

2
=

1

1 + 1

as required. For the inductive step, suppose that the result holds up to n = k for some k ≥ 1.
Then we express the sum up to k+1 in terms of the sum up to k by splitting off the last term
and apply the inductive hypothesis, giving

k+1∑
i=1

1

i(i+ 1)
=

k∑
i=1

1

i(i+ 1)
+

1

(k + 1)(k + 2)
=

k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)
=

(k + 1)2

(k + 1)(k + 2)
=
k + 1

k + 2
,

as required.

(b) [⋆⋆] Prove that for all n ≥ 1,
n∑

i=1

i · i! = (n+ 1)!− 1

Solution: For the base case, taking n = 1, we have

1∑
i=1

i · i! = 1 · 1! = 1 = (1 + 1)!− 1

Page 4 of 8



as required. For the inductive step, suppose that the result holds up to some k ≥ 1. Then we
once again split off the last term of the sum and apply the inductive hypothesis, giving

k+1∑
i=1

i · i! = (k + 1)(k + 1)! +

k∑
i=1

i · i! = (k + 1)(k + 1)! + (k + 1)!− 1 = (k + 2)(k + 1)!− 1,

as required.

(c) [⋆⋆] Prove that for all n ≥ 2,
n∏

i=2

(
1− 1

i2

)
=
n+ 1

2n

Solution: For the base case, taking n = 2, we have

2∏
i=2

(
1− 1

i2

)
= 1− 1

4
=

3

4
=

2 + 1

2 · 2

as required. For the inductive step, suppose that the result holds up to some k ≥ 2. First, we
express the product up to k + 1 in terms of the product up to k and then apply the inductive
hypothesis, yielding

k+1∏
i=2

(
1− 1

i2

)
=

(
1− 1

(k + 1)2

) k∏
i=2

(
1− 1

i2

)
=

(
1− 1

(k + 1)2

)
· k + 1

2k
. (1)

Now, we want to show this is equal to (k + 1+ 1)/2k, so let’s simplify these fractions, starting
with the left term:

1− 1

(k + 1)2
=

(k + 1)2

(k + 1)2
− 1

(k + 1)2
=
k2 + 2k + 1− 1

(k + 1)2
=
k(k + 2)

(k + 1)2
.

Combined with (1), this gives

k+1∏
i=2

(
1− 1

i2

)
=
k(k + 2)

(k + 1)2
· k + 1

2k
=

k(k + 2)

2k(k + 1)
=

(k + 1) + 1

2(k + 1)
,

as required.

(d) [⋆⋆⋆] Let x1 = 1, xn+1 =
√
1 + 2xn for all n ≥ 1. Prove xn < 4 for all n ≥ 1.

Solution: For the base case, taking n = 1, we have x1 = 1 < 4 as required. For the inductive
step, suppose that xk < 4 for some k ≥ 1. Then we express xk+1 in terms of xk and apply the
inductive hypothesis to get

xk+1 =
√
1 + 2xk <

√
1 + 2 · 4 = 3 < 4,

as required.

(e) [⋆⋆⋆] Recall from COMS10007 that the Fibonacci sequence is given by F0 = 0, F1 = 1, and

Page 5 of 8



Fn+2 = Fn+1 + Fn for all n ≥ 0. Prove that writing ϕ = (1 +
√
5)/2 and ψ = (1−

√
5)/2, we have

Fn =
ϕn − ψn

√
5

for all n ≥ 0.

Prove this by induction on n.

Hint: It may help to prove that ϕ2 = ϕ+ 1 and ψ2 = ψ + 1.

Solution: For the base case, taking n = 0 and n = 1, observe that

ϕ0 − ψ0

√
5

=
1− 1√

5
= 0 = F0,

ϕ1 − ψ1

2
=

1 +
√
5− (1−

√
5)

4
= 1 = F1.

For the inductive step, suppose the result holds up to n + 1 for some n ≥ 0. Then expressing
Fn+2 in terms of Fn+1 and Fn and applying the induction hypothesis, we have

Fn+2 = Fn+1 + Fn =
ϕn+1 − ψn+1 + ϕn − ψn

√
5

=
ϕn(ϕ+ 1)− ψn(ψ + 1)√

5
.

Note that we needed to apply the induction hypothesis to both Fn+1 and Fn. (This is why we
need two base cases.) The result will therefore hold if we can show ϕ+1 = ϕ2 and ψ+1 = ψ2;
and indeed, we have

ϕ+ 1 =
3 +

√
5

2
=

6 + 2
√
5

4
= ϕ2,

ψ + 1 =
3−

√
5

2
=

6− 2
√
5

4
= ψ2.

(In fact, these two identities are why ϕ and ψ appear in nature so often!)

5. [⋆⋆⋆⋆] Recall from Question 4 that Ft is the t’th Fibonacci number. Prove by induction that Fm+n+1 =
Fm+1Fn+1 + FmFn for all m,n ≥ 0.

Solution: We will prove this by induction on n, fixing an arbitrary m ≥ 0. For the base cases with
n = 0 and n = 1, we have

FmF0 + Fm+1F1 = 0Fm + 1Fm+1 = Fm+0+1

FmF1 + Fm+1F2 = 1Fm + 1Fm+1 = Fm+1+1,

as required. For the inductive step, suppose the result holds up to some n ≥ 1. Then we have

Fm+(n+1)+1 = Fm+n+2 = Fm+n+1 + Fm+n = Fm+n+1 + Fm+(n−1)+1,

so on applying the induction hypothesis we obtain

Fm+n+2 = Fm+1Fn+1 + FmFn + Fm+1Fn + FmFn−1

= Fm+1(Fn+1 + Fn) + Fm(Fn + Fn−1)

= Fm+1Fn+2 + FmFn+1,

as required. We could also have done this by induction on m and n simultaneously, as in the lecture
notes.

Page 6 of 8



6. [⋆⋆⋆] Consider a rectangular board divided into an 2 × n square grid for some n ≥ 1. We can use a
“domino” to cover any two horizontally or vertically adjacent squares of the board, as shown below for
n = 3.

Prove by induction that there are exactly Fn+1 different ways to cover every square of the board with
no two dominoes overlapping, where Fn+1 is defined as in Question 4.

Solution: For the base case, taking n ∈ {1, 2}, we observe that there is only 1 = F2 way to cover a
2× 1 board (with a vertical domino), and only 2 = F3 ways to cover a 2× 2 board (either with two
vertical dominoes or two horizontal dominoes).

For the inductive step, let D(k) be the number of possible covers of a 2 × k square grid. Suppose
the result holds up to n+1 for some n ≥ 0, and consider a 2× (n+2) square grid. In any covering,
the lower-right square must be covered by either a vertical domino or a horizontal domino. If it is
vertical, the remaining 2× (n+ 1) square grid can be covered in D(n+ 1) ways. If it is horizontal,
then the upper-right square can only be covered by another horizontal domino, and remaining 2×n
grid can be covered in D(n) ways. Moreover, these ways are all distinct from each other — the first
D(n+1) ways have a vertical domino at the right, and the last D(n) ways have a horizontal domino.
We have therefore shown

D(n+ 2) = D(n+ 1) +D(n).

By the induction hypothesis, it follows that D(n+ 2) = Fn+2 + Fn+1 = Fn+3, as required.

7. [⋆⋆⋆⋆⋆] Consider a rectangular board divided into an 2n × 2n square grid for some n ≥ 1, with one
square missing. Instead of dominoes as in question 6, we wish to cover this board with non-overlapping
corner-shaped trinominoes, as shown below for n = 2.

Prove by induction on n that this is always possible, no matter which square is missing.

Solution: For the base case, we observe that when n = 1, the non-missing squares of our board
must be in the exact shape of a single trinomino.

For the inductive step, suppose the result holds up to n, and consider a 2n+1 × 2n+1 square grid
with one missing square. Observe that our board can be divided into four 2n × 2n boards, one of
which has a missing square. We add a single trinomino covering one square of each remaining board
as shown below.

Page 7 of 8



2n

2n

2n 2n

By the induction hypothesis, all four boards can now individually be covered by trinominoes, treating
the existing trinomino as a missing square on the boards which don’t already have one.

Page 8 of 8


