
COMS20010 — Problem sheet 10

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 11, focusing on dynamic programming.

1. This question will walk through the weighted interval scheduling problem. Suppose we have the following
set of weighted intervals.

00 10 20 30 40 50 60

30 40

40 27

80 3 3

3

We will go through creating a relevant recurrence relation, and then building a dynamic programming
algorithm from it.

(a) [⋆⋆] Given a set S of intervals, let WIS(S) be the highest weight of any compatible subset of S.
Write down a recurrence relation for WIS(S) based on choosing I ∈ S, then dividing compatible
subsets of S into those containing I and those not containing I.

Page 1 of 2

(b) [⋆⋆] Using part (a), write down a näıve exponential time algorithm which uses recursion to solve the
weighted interval scheduling problem. Given a set S of intervals, it should return a maximum-weight
compatible subset of S (rather than just the weight of that set as in part (a)).

(c) [⋆⋆] How can we re-arrange our recursive calls so that we can re-use the values?

(d) [⋆⋆] Use this to write down a iterative polynomial time algorithm for the weighted interval scheduling
problem.

(e) [⋆⋆] Run this algorithm on the above problem instance. What is the optimal set of intervals?

2. This question will go through the Bellman-Ford algorithm to find shortest paths between vertices on a
graph with no negative-weight cycles.

Consider the following graph.

a

t

b

c

d

e

f

5 7

2

−1

−3

10

4 4

8

−7

−3

(a) [⋆⋆] Writing dH(x, y) for the distance from x to y in a graph H, write down a simple recurrence
relation for dG(v, t) in terms of the out-neighbourhood N+(v) and the weight function w of the
graph.

(b) [⋆⋆] Recall that we are trying to find the shortest paths between vertices in a graph.

The recurrence relation of part (a) doesn’t immediately lead to a polynomial time algorithm. What
condition do we need to add to our general problem statement to achieve this?

(c) [⋆⋆] Use the polynomial time version of Bellman-Ford to find dG(v, t) for each vertex v ∈ V .

3. [⋆⋆] The form of the Bellman-Ford algorithm discussed in lectures will, given a weighted digraph G with
no negative-weight cycles and a vertex t, return shortest paths from each s ∈ V (G) to t in O(|V ||E|)
time. Suppose you are instead given G and a vertex s, and you wish to find shortest paths from s to
each t ∈ V (G) in O(|V ||E|) time (i.e. the single-source shortest path problem). Explain how to use
Bellman-Ford to do this.

4. The edit distance between two strings is the minimum number total of character insertions, deletions
and substitutions to move from one to the other. For example, the edit distances between “fad” and
“fade”, between “fade” and “face”, and between “face” and “fae” are all 1, as is the edit distance from
“fad” to “fae”. The edit distance from “kitten” to “sitting” is 3, e.g. via the path “kitten” to “sitten”
to “sittin” to “sitting”. You wish to come up with an algorithm to find the edit distance between two
strings of lengths m and n.

(a) [⋆⋆] Explain how to reduce this problem to finding a shortest path in a (large) graph, and explain
why this does not allow you to apply e.g. breadth-first search to get an algorithm with running
time polynomial in m and n.

Page 2 of 2

(b) [⋆⋆⋆] Using dynamic programming or otherwise, give an algorithm with running time O(mn).

5. [⋆⋆⋆] You are writing a word processor. When the user is writing left-aligned text, you wish your word
wrap feature to make the right margins of each paragraph as even as possible. Thus for each paragraph
you are given as input an ordered list w1, . . . , wn of words of given lengths ℓ(w1), . . . , ℓ(wn), and a
maximum line length L. You may assume ℓ(wi) ≤ L for all i ∈ [n]. You wish to divide the words into
lines L1, . . . , Lt such that:

� Every word appears on at most one line (i.e. you are not allowed to insert hyphens).

� The lines preserve the order of the words, so that L1 = w1w2 . . . wi1 , L2 = wi1+1wi1+2 . . . wi2 , and
so on up to Lt = wit−1+1wit−1+2 . . . wn for some 0 < i1 ≤ i2 ≤ · · · ≤ it−1 < n.

� Every line has length at most L including spaces between words (which have length 1 each). Thus
the length of line j is given by ℓ(Lj) =

∑
w∈Lj

(ℓ(w) + 1)− 1, and we require ℓ(Lj) ≤ L for all j.

� The raggedness of your paragraph is given by the sum of the squares of the right margins for all
but the last line, that is,

∑t−1
i=1(L − ℓ(Lj))

2. This should be as small as possible. (The reason we
square the L − ℓ(Lj) terms here is to heavily penalise lines which are short by more than a few
characters.)

Using dynamic programming or otherwise, give an efficient algorithm to accomplish this.

6. (a) [⋆⋆] Give an exponential-time recursive algorithm to check whether a given graph contains an
independent set of a given size k. (You do not need to find the set.)

(b) [⋆⋆] Using your answer to part (a) or otherwise, give a polynomial-time algorithm to check whether
a tree contains an independent set of size k. Hint: What happens when one or more vertices are
removed from the input graph, disconnecting it?

(c) [⋆⋆⋆] A bandwidth-b ordering of a graph G = (V,E) is an ordering v1, . . . , vn of V such that for
all edges {vi, vj} ∈ E, we have |i − j| ≤ b. For example, if G is the path v1 . . . vn, then v1, . . . , vn
and vn, . . . , v1 are both bandwidth-1 orderings. Give a 2bpoly(n)-time algorithm for IS given a
bandwidth-b ordering of the input graph.

7. [⋆⋆⋆] Using dynamic programming or otherwise, give an algorithm to determine whether or not an
n-vertex graph contains a Hamilton cycle in O(2npoly(n)) time.

8. (a) [⋆⋆⋆] For entirely legitimate reasons, you are inside a bank vault with a large sack that you are
trying to fill with as much wealth as possible. The vault contains many different types of items,
from banknotes to gold bars to mysterious treasure maps. Each item i has a price Pi ≥ 0 and an
integer volume Vi ≥ 0, and your sack can hold total volume V . You want to find the maximum
value of any set of items that you can fit in your sack; this is known as the 0-1 Knapsack problem.
Give a dynamic programming algorithm which solves an n-item instance in time O(nV).

(b) [⋆⋆⋆] Explain how to adjust your dynamic programming algorithm to return a collection of items
which attains this value.

(c) [⋆⋆] In the Subset-Sum problem, you are given a set S of non-negative integers and a non-negative
integer x, and you wish to decide whether there is a subset of S whose elements sum to x. Give a
Cook reduction from Subset-Sum to 0-1 Knapsack.

(d) [⋆⋆⋆⋆] Prove that 0-1 Knapsack is NP-hard by giving a Karp reduction from VC (a.k.a. Vertex
Cover) to Subset-Sum. (Hint: The easiest way of doing this involves creating a Subset-Sum
instance which has one number associated with each vertex and edge of the VC instance. You can
then encode information in the digits of these numbers.)

(e) [⋆⋆] Given parts (a) and (d), why have we not just proved P = NP?

Page 3 of 2

