
COMS20010 — Problem sheet 10

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. At most 10% of marks in the exam will be
from questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 11, focusing on dynamic programming.

1. This question will walk through the weighted interval scheduling problem. Suppose we have the following
set of weighted intervals.

00 10 20 30 40 50 60

30 40

40 27

80 3 3

3

We will go through creating a relevant recurrence relation, and then building a dynamic programming
algorithm from it.

(a) [⋆⋆] Given a set S of intervals, let WIS(S) be the highest weight of any compatible subset of S.
Write down a recurrence relation for WIS(S) based on choosing I ∈ S, then dividing compatible
subsets of S into those containing I and those not containing I.

Page 1 of 11

Solution: Let S be the set of all intervals. Then if S = ∅ we have WIS(S) = 0. Otherwise,
given I ∈ S, let XI ⊆ S be the set of intervals compatible with I (i.e. those which don’t
intersect it). Then we have

WIS(S) = max{w(I) +WIS(XI),WIS(S \ {I})}.

The first term is the maximum weight of all compatible sets containing I, and the second term
is the maximum weight of all compatible sets not containing I.

(b) [⋆⋆] Using part (a), write down a näıve exponential time algorithm which uses recursion to solve the
weighted interval scheduling problem. Given a set S of intervals, it should return a maximum-weight
compatible subset of S (rather than just the weight of that set as in part (a)).

Solution:

Algorithm: Näıve Weighted Interval Scheduling: NWIS(S)

Input : A set of weighted intervals, S
Output: A subset of weighted intervals, S′ ⊆ S, of maximum weight

1 begin
2 if S = ∅ then
3 return ∅.
4 let I ∈ S.
5 let XI = {Y ∈ S : Y ∩ I ̸= ∅}.
6 if w(I) +WIS(XI) ≥WIS(S \ {I}) then
7 return {I} ∪NWIS(XI).

8 else
9 return NWIS(S \ {I}).

Note the way this algorithm is slightly different to the näıve algorithm presented in lectures.
How can we show that these two algorithms are actually equivalent?

(c) [⋆⋆] How can we re-arrange our recursive calls so that we can re-use the values?

Solution: We want to keep track of the values of all our recursive calls so that we can re-use
them. We will do this in two parts.

First, we create a cache to store these values (“memoising”). Then, we will change our algorithm
to take a sorted list of intervals as input (in increasing order of finish time), and take I to be
the last interval in the list. Now, if our original input is S = {I1, . . . , In} where I1 finishes first,
I2 finishes second and so on, then XIn will be the set of all intervals which end before In starts.
This set will be of the form {I1, . . . , Ij} for some j. Meanwhile, S \ {In} is just {I1, . . . , In−1}.
So our only recursive calls over the entire algorithm will be to sets of the form {I1, . . . , Ij} for
some j ≤ n, and our cache will only need to hold n values.

(d) [⋆⋆] Use this to write down a iterative polynomial time algorithm for the weighted interval scheduling
problem.

Solution:

We turn the memoised recursive algorithm into an iterative algorithm by building our cache
iteratively rather than recursively, starting from the base case of S = ∅ and working out way
up the recursion tree.

Page 2 of 11

Input : An unsorted array S of n requests and a weight function w.
Output: A maximum-weight compatible subset of R.

1 begin
2 Sort S in increasing order of finish time and write S = {I1, . . . , In} as above.
3 let cache[0] = ∅ and cache[1], . . . , cache[n] = Null.
4 for i = 1 to n do
5 Use binary search to find p(i) such that {I1, . . . , Ip(i)} = XIi , so that Ip(i) is the

latest-finishing interval that is compatible with Ii.
6 if w(Ii) + w(cache[p(i)]) ≥ w(cache[i− 1]) then
7 let cache[i] = {Ii} ∪ cache[p(i)].
8 else
9 let cache[i] = cache[i− 1].

10 Return cache[n].

Here the loop invariant is that at the start of iteration i, for all j ≤ i− 1, cache[j] contains a
maximum-weight compatible set for {I1, . . . , Ij} (which we consider to be ∅ when j = 0).

(e) [⋆⋆] Run this algorithm on the above problem instance. What is the optimal set of intervals?

Solution:

00 10 20 30 40 50 60

30 40

40 27

80 3 3

3

This set of intervals has weight 80 + 3 + 40 = 123.

2. This question will go through the Bellman-Ford algorithm to find shortest paths between vertices on a
graph with no negative-weight cycles.

Consider the following graph.

Page 3 of 11

a

t

b

c

d

e

f

5 7

2

−1
−3

10

4 4

8

−7

−3

(a) [⋆⋆] Writing dH(x, y) for the distance from x to y in a graph H, write down a simple recurrence
relation for dG(v, t) in terms of the out-neighbourhood N+(v) and the weight function w of the
graph.

Solution:

dG(v, t) =

{
0 if v = t,

minx∈N+(v) w(v, x) + dG−v(x, t) otherwise.

If v = t, then since G has no negative-weight cycles we have d(v, t) = 0. Otherwise, any shortest
path from v to t has to start by picking some edge (v, x) out of v, and is then followed by a
shortest path from x to t in G− v.

(b) [⋆⋆] Recall that we are trying to find the shortest paths between vertices in a graph.

The recurrence relation of part (a) doesn’t immediately lead to a polynomial time algorithm. What
condition do we need to add to our general problem statement to achieve this?

Solution: The problem is that there are 2|V (G)| possible sets of vertices to delete from G, so
we can’t evaluate dG−X(x, y) for all vertex pairs x, y and all vertex sets X ⊆ V (G). We need
to extend our problem to ask for the shortest paths between vertices, using at most k edges
(where k is part of the input). This helps us out by allowing us to avoid deleting vertices.
Writing dH(x, y, k) for the length of a shortest path from x to y in H with at most k edges,
the recurrence of part (a) becomes

dG(v, t, k) =

0 if v = t,

∞ if v ̸= t and k = 0,

minx∈N+(v) w(v, x) + dG−v(x, t, k − 1) otherwise.

The key insight, as discussed in lectures, is that since G has no negative-weight cycles we can
also write this as

dG(s, v, k) =

0 if v = t,

∞ if v ̸= t and k = 0,

minx∈N+(v) w(v, x) + dG(x, t, k − 1) otherwise.

i.e. taking all our distances in G rather than having to delete v. So now instead of having to

Page 4 of 11

calculate dG−X(x, y) for exponentially many vertex sets X, we only need to calculate dG(x, y, k)
for |V (G)|3 possible values of x, y and k.

(c) [⋆⋆] Use the polynomial time version of Bellman-Ford to find dG(v, t) for each vertex v ∈ V .

Solution: d(a, t) = −4, d(b, t) = −5, d(c, t) = 2, d(d, t) = −3, d(e, t) = 1, d(f, t) = −1, and
d(t, t) = 0.

3. [⋆⋆] The form of the Bellman-Ford algorithm discussed in lectures will, given a weighted digraph G with
no negative-weight cycles and a vertex t, return shortest paths from each s ∈ V (G) to t in O(|V ||E|)
time. Suppose you are instead given G and a vertex s, and you wish to find shortest paths from s to
each t ∈ V (G) in O(|V ||E|) time (i.e. the single-source shortest path problem). Explain how to use
Bellman-Ford to do this.

Solution: Form a new digraph H by reversing every edge of G, so that (x, y) ∈ E(H) if and only
if (y, x) ∈ E(G). Apply Bellman-Ford to H with sink s, and reverse the resulting paths so that
x1 . . . xt becomes xt . . . x1. Any length-ℓ path from a to b in G becomes a length-ℓ path from b to a
in H when reversed and vice versa, so when Bellman-Ford finds a shortest path from t to s in H,
reversing it yields a shortest path from s to t in G.

4. The edit distance between two strings is the minimum number total of character insertions, deletions
and substitutions to move from one to the other. For example, the edit distances between “fad” and
“fade”, between “fade” and “face”, and between “face” and “fae” are all 1, as is the edit distance from
“fad” to “fae”. The edit distance from “kitten” to “sitting” is 3, e.g. via the path “kitten” to “sitten”
to “sittin” to “sitting”. You wish to come up with an algorithm to find the edit distance between two
strings of lengths m and n.

(a) [⋆⋆] Explain how to reduce this problem to finding a shortest path in a (large) graph, and explain
why this does not allow you to apply e.g. breadth-first search to get an algorithm with running
time polynomial in m and n.

Solution: Let S be the set of all strings on at most max{m,n} characters. Form a graph
G on the set of strings by joining string s to string t by an edge if they are edit distance 1
apart. Then the edit distance between two strings is precisely the distance between them in
G. Unfortunately, G contains more than 26max{m,n} vertices, so breadth-first search will run
in time exponential in m and n.

(b) [⋆⋆⋆] Using dynamic programming or otherwise, give an algorithm with running time O(mn).

Solution: First, some notation. Write D(a, b) for the edit distance between a and b. Suppose
our input is (w1, w2), where w1 has length m and w2 has length n. Write x1 for the last
character of w1 and write w−

1 for the length-(m− 1) substring formed by removing x1 from the
end of w1. Likewise, write x2 for the last character of w2 and write w−

2 for the length-(n− 1)
substring formed by removing x2 from the end of w2.

We form a recursive algorithm by breaking the problem down into choices, taking our choice to
be: if w1 and w2 are both non-empty, what operations do we perform to make the last character
of w1 match the last character of w2? If they already match, i.e. x1 = x2, then it remains to
turn w−

1 into w−
2 . If they don’t match, then we must either delete x1 (in which case it remains

to turn w−
1 into w2), delete x2 (in which case it remains to turn w1 into w−

2), or turn x1 into

Page 5 of 11

x2 via a substitution (in which case it remains to turn w−
1 into w−

2). In any case, if x1 ̸= x2,
we have used an operation. It follows that

D(w1, w2) =

length(w1) if w2 is empty,

length(w2) if w1 is empty,

D(w−
1 , w

−
2) if w1, w2 aren’t empty and x1 = x2,

1 + min{D(w−
1 , w

−
2), D(w1, w

−
2), D(w−

1 , w2)} otherwise.

Observe that in evaluating this recurrence relation, we only call D(x, y) where x is an initial
substring of w1 and y is an initial substring of w2, for a total of O(mn) calls. The base case takes
time O(m + n) ⊆ O(mn), and each other call takes time O(1). Thus memoisation yields an
O(mn)-time recursive algorithm. Optionally, we could make this into an iterative algorithm
as follows:

Input : Two words w1 and w2 (indexed from zero).
Output: D(w1, w2).

1 begin
2 let m← length(w1) and n← length(w2).
3 let cache be an empty (m+ 1)× (n+ 1) array.
4 let cache[i][0]← i for all i ∈ [m].
5 let cache[0][j]← j for all j ∈ [n].
6 for i = 1 to m do
7 for j = 1 to n do
8 if w1[i− 1] == w2[j − 1] then
9 Let cache[i][j] = cache[i− 1][j − 1].

10 else
11 Let cache[i][j] = 1 +

min{cache[i− 1][j − 1], cache[i][j − 1], cache[i− 1][j]}.

This is known as the Wagner-Fischer algorithm.

5. [⋆⋆⋆] You are writing a word processor. When the user is writing left-aligned text, you wish your word
wrap feature to make the right margins of each paragraph as even as possible. Thus for each paragraph
you are given as input an ordered list w1, . . . , wn of words of given lengths ℓ(w1), . . . , ℓ(wn), and a
maximum line length L. You may assume ℓ(wi) ≤ L for all i ∈ [n]. You wish to divide the words into
lines L1, . . . , Lt such that:

� Every word appears on at most one line (i.e. you are not allowed to insert hyphens).

� The lines preserve the order of the words, so that L1 = w1w2 . . . wi1 , L2 = wi1+1wi1+2 . . . wi2 , and
so on up to Lt = wit−1+1wit−1+2 . . . wn for some 0 < i1 ≤ i2 ≤ · · · ≤ it−1 < n.

� Every line has length at most L including spaces between words (which have length 1 each). Thus
the length of line j is given by ℓ(Lj) =

∑
w∈Lj

(ℓ(w) + 1)− 1, and we require ℓ(Lj) ≤ L for all j.

� The raggedness of your paragraph is given by the sum of the squares of the right margins for all
but the last line, that is,

∑t−1
i=1(L − ℓ(Lj))

2. This should be as small as possible. (The reason we
square the L − ℓ(Lj) terms here is to heavily penalise lines which are short by more than a few
characters.)

Using dynamic programming or otherwise, give an efficient algorithm to accomplish this.

Page 6 of 11

Solution: We form a recursive algorithm by breaking the problem down into choices, taking our
choice to be: where do we put the first line break? Let I be the largest value of i such that w1 . . . wi

can all fit on one line, i.e.

I = max
{
i : i− 1 +

i∑
j=1

ℓ(wj) ≤ L
}
.

The lowest raggedness we can achieve by inserting a line break after wi will be equal to the raggedness
contributed by that first line plus the lowest raggedness we can achieve in wi+1 . . . wn, so writing
R(w1, . . . , wn) for the lowest raggedness we can achieve on w1, . . . , wn we have

R(w1, . . . , wn) =

0 if I = n,

min

{(
L−

∑k
j=1 ℓ(wj)− k + 1

)2

+R(wk+1, . . . , wn) : 1 ≤ k ≤ I

}
otherwise.

There are O(n) possible calls, one for each set of arguments wi, . . . , wn, and the non-recursive parts
of each call take O(n) time to resolve. Thus with memoisation, we achieve an O(n2)-time algorithm,
choosing the first line break at whichever location gives the lowest raggedness. Optionally, we
could make this into an iterative algorithm as follows:

Input : Words w1, . . . , wn, lengths ℓ(w1), . . . , ℓ(wn), and a maximum line length
L ≥ max{wi : i ∈ [n]}.

Output: A list of line break locations which minimises raggedness.
1 begin
2 let cache and next be empty arrays of length n+ 1.
3 let cache[n]← 0.
4 let next[n]← −1.
5 let I[j]← max

{
i : i− j +

∑i
k=j ℓ(wk) ≤ L

}
.

6 for i = n− 1 to 1 do
7 if I[j] == n then
8 let next[i]← −1.
9 let cache[i]← 0.

10 else
11 let next[i]← a value of k in {i+ 1, . . . , I[i] + 1} which minimises

(L−
∑k−1

j=i ℓ(wj)− (k − 1) + i)2 + cache[k].

12 let cache[i]← cache[next[i]] + (L−
∑next[i]−1

j=i ℓ(wj)− (next[i]− 1) + i)2.

13 let place← 1. while next[place] ̸= −1 do
14 output line break before wnext[place].
15 let place← next[place].

6. (a) [⋆⋆] Give an exponential-time recursive algorithm to find the maximum size of any independent set
in a given graph. (You do not need to find the set.)

Solution: We form a recursive algorithm by breaking the problem down into choices, taking
our choice to be: do we include a given vertex in an independent set, or not? Let v be an
arbitrary vertex of G. Then the independent sets in G not containing v are precisely the
independent sets of G − v, and the independent sets in G containing v are precisely the sets

Page 7 of 11

{v} ∪ X where X is an independent set of G − v − N(v). Thus G contains an independent
set of size at least k if and only if either G − v contains an independent set of size at least k
or G − v − N(v) contains an independent set of size at least k − 1, and we are left with the
following recurrence relation:

MaxIS(G) =

0 if V (G) = ∅,
1 if |V (G)| = 1,

max{MaxIS(G− v), 1 +MaxIS(G− v −N(v))} otherwise, where v ∈ V (G)

is arbitrary.

Evaluating this recurrence relation, with or without memoisation, yields an exponential-time
algorithm.

(b) [⋆⋆] Using your answer to part (a) or otherwise, give a polynomial-time algorithm to find the
maximum size of any independent set in a given tree. Hint: What happens when one or more
vertices are removed from the input graph, disconnecting it?

Solution: For any graph H, write C(H) for the set of all components of H. Observe that if
G is a disconnected graph with components C1, . . . , Cr, then the independent sets of G are
precisely the unions of independent sets in C1, . . . , Cr, so we have

MaxIS(G) =
∑

C∈C(G)

MaxIS(C).

Thus when G is a tree, we have

MaxIS(G) =

0 if V (G) = ∅,
1 if |V (G)| = 1,

max{
∑

C∈C(G−v) MaxIS(C), otherwise, where∑
C∈C(G−v−N(v)) MaxIS(C)} v ∈ V (G) is arbitrary.

We now use the trick of imposing an order. Pick an arbitrary root for the input tree, and direct
all edges from the root to the leaves; thus every subtree has a unique root. Now evaluate the
recurrence relation above, always taking v to be the root of the tree. Every component we
recurse into will be a subtree of the original, so we have only O(n) unique calls. Memoising
therefore yields a polynomial-time algorithm.

(c) [⋆⋆⋆] A bandwidth-b ordering of a graph G = (V,E) is an ordering v1, . . . , vn of V such that for
all edges {vi, vj} ∈ E, we have |i − j| ≤ b. For example, if G is the path v1 . . . vn, then v1, . . . , vn
and vn, . . . , v1 are both bandwidth-1 orderings. Give a 2bpoly(n)-time algorithm for IS given a
bandwidth-b ordering of the input graph.

Solution: We apply the same algorithm as in part (a), but always taking v to be the first
vertex in the bandwidth-b ordering. Then at any point in the recursion, if v = vi, then the
only vertices we have removed from the original graph are v1, . . . , vi−1 and some subset of
N(v1) ∪ · · · ∪N(vi−1). Since the ordering has bandwidth b, we have

N(v1) ∪ · · · ∪N(vi−1) ⊆ {v1, . . . , vi+b−1};

hence there are only O(2b) possibilities for the input graph, and only O(2bn) distinct recursive
calls overall. We can therefore obtain a 2bpoly(n)-time algorithm by memoising.

Page 8 of 11

7. [⋆⋆⋆] Using dynamic programming or otherwise, give an algorithm to determine whether or not an
n-vertex graph contains a Hamilton cycle in O(2npoly(n)) time.

Solution: To express this problem recursively, we’ll reformulate it and add an argument. A Hamil-
ton path in a graph is a path containing every vertex of the graph; thus a Hamilton cycle with an
edge removed is a Hamilton path, and a Hamilton path whose endpoints are joined is a Hamilton
cycle. We will ask the question HP(G, v,X): Does the input graph G contain a Hamilton path from
a given vertex v to some vertex in a given set X ⊆ N(V (G))? Observe that G contains a Hamilton
cycle if and only if HP(G, v,N(v)) = Yes for all v ∈ V (G), so it suffices to give an O(n2n)-time
algorithm for HP.

We now form a recursive algorithm by breaking the problem down into choices, taking our choice to
be: which edge out of v do we choose? The Hamilton paths from v to X in G that start with the
edge {v, w} correspond exactly to Hamilton paths from w to X \ {v} in G− v, so we have

HP(G, v,X) =

Yes if V (G) = {v},
No if |V (G)| > 1 and d(v) = 0,∨

w∈N(v) HP(G− v, w,X \ {v}) otherwise.

There are at most n possible values of v, at most 2n possible values of G, and X is determined by
G, so memoising this algorithm yields running time O(2npoly(n)). This can be improved to O(n2n)
with some clever optimisations.

8. (a) [⋆⋆⋆] For entirely legitimate reasons, you are inside a bank vault with a large sack that you are
trying to fill with as much wealth as possible. The vault contains many different types of items,
from banknotes to gold bars to mysterious treasure maps. Each item i has a price Pi ≥ 0 and an
integer volume Vi ≥ 0, and your sack can hold total volume V . You want to find the maximum
value of any set of items that you can fit in your sack; this is known as the 0-1 Knapsack problem.
Give a dynamic programming algorithm which solves an n-item instance in time O(nV).

Solution: Say we are given items I1, . . . , Ik and sack volume U , and write KnapsackPrice(I1, . . . , Ik, U)
for the corresponding maximum price. Every possible set of items either contains Ik or it
doesn’t. The price of the most valuable set of items with volume at most U which doesn’t
contain Ik is KnapsackPrice(I1, . . . , Ik−1, U), by definition. The price of the most valuable set
of items with volume at most U which does contain Ik is going to be the price of the most
valuable set of items in I1, . . . , Ik−1 with volume at most U − Vk plus the price of Ik itself,
i.e. Pk +KnapsackPrice(I1, . . . , Ik−1, U − Vk). Of course, we can only take Ik at all if we have
enough space for it. Thus if for brevity we write

Priceout = KnapsackPrice(I1, . . . , Ik−1, U),

Pricein = Pk +KnapsackPrice(I1, . . . , Ik−1, U − Vk),

then we have

KnapsackPrice(I1, . . . , Ik, U) =

0 if k = 0,

Priceout if k ≥ 1 and Vk > U or Priceout ≥ Pricein,

Pricein otherwise.

If our original instance has n items and volume V , we can see that there are only V possible
values of U and n possible values of k. Thus on memoising the above recurrence we will only
have O(nV) instances with a running time of O(1) per instance, for at total of O(nV).

Page 9 of 11

(b) [⋆⋆⋆] Explain how to adjust your dynamic programming algorithm to return a collection of items
which attains this value.

Solution: Again, say we are given items I1, . . . , Ik and sack volume U , and now write Knapsack(I1, . . . , Ik, U)
for an optimal set of items (as opposed to the price). For brevity, we write

Setout = Knapsack(I1, . . . , Ik−1, U),

Setin = {Ik} ∪Knapsack(I1, . . . , Ik−1, U − Vk).

Then by essentially the same argument as above we have a recurrence relation of

Knapsack(I1, . . . , Ik, U) =

∅ if k = 0,

Setout if n ≥ 1 and Vk > U or Priceout ≥ Pricein,

Setin otherwise.

Thus we add Ik to the knapsack if it leads to a higher optimum price by our old algorithm.
This still runs in time O(nV).

(c) [⋆⋆] In the Subset-Sum problem, you are given a set S of non-negative integers and a non-negative
integer x, and you wish to decide whether there is a subset of S whose elements sum to x. Give a
Cook reduction from Subset-Sum to 0-1 Knapsack.

Solution: Let (S, x) be an instance of Subset-Sum. Form an instance of 0-1 Knapsack with
one item for each element of S, such that the item corresponding to element z has both price
and volume equal to z, and the total sack volume is x. Then the maximum value we can fit in
the knapsack will be precisely the largest number y ≤ k such that some subset of S sums to
y; in particular, (S, x) is a Yes instance of Subset-Sum if and only if the optimal price of this
0-1 Knapsack instance is x. Thus we call our 0-1 Knapsack oracle on this instance and return
Yes if it returns x and No otherwise. This process took polynomial time, and the instance has
polynomial size, so we have a Cook reduction as required.

(d) [⋆⋆⋆⋆] Prove that 0-1 Knapsack is NP-hard by giving a Karp reduction from VC (a.k.a. Vertex
Cover) to Subset-Sum. (Hint: The easiest way of doing this involves creating a Subset-Sum
instance which has one number associated with each vertex and edge of the VC instance. You can
then encode information in the digits of these numbers.)

Solution: Let (G, k) be an instance of VC, and form an instance of Subset-Sum as follows.
Order the edges of G arbitrarily, writing E(G) = {e1, . . . , em}. For each ei ∈ E(G), let yei =
10i. Let N = 10m+1, and for each v ∈ V (G), let yv = N +

∑
ei : v∈ei

yei . Let the set of numbers
for the instance be S = {yv : v ∈ V (G)} ∪ {ye : e ∈ E(G)}, and let x = kN + 2

∑
e∈E(G) ye, so

that the digits of x are k followed by a string of m twos. Note that forming this instance (S, x)
of Subset-Sum takes polynomial time as required.

Suppose G has a vertex cover C of size k. Then we can form a corresponding set X ⊆ S by
including yv for every vertex v ∈ C and ye for every edge e ∈ E(G) which has exactly one
endpoint in C, i.e.

X = {yv : v ∈ S} ∪ {ye : |e ∩ C| = 1}.

Then for all i ≤ |E(G)|, the i’th least significant digit of the sum of X will be 2 (matching x)
no matter whether one endpoint of e is covered by C or two. Moreover, the remaining digits of
the sum of X will be k, again matching x. Thus X sums to x, and so if (G, k) is a Yes instance
of VC then (S, x) is a Yes instance of Subset-Sum.

Page 10 of 11

Conversely, suppose there is a subset X ⊆ S which sums to x, and let C = {v : yv ∈ X}; we
claim that C is a vertex cover of G with size k. First observe that no matter what X is, there
are no carries in evaluating the m least significant digits of the sum, as each such digit is 1
in exactly three elements of S (each element corresponding to an endpoint plus the element
corresponding to the edge itself). Since the i’th least significant digit of this sum matches x, it
is 2; writing ei = {u, v}, it follows that exactly two out of three of yei , yu and yv are in X. In
particular, this implies that at least one of u or v is in C for each edge e = {u, v} of G, so C is
a vertex cover. Similarly, since the (m + 1)’st least significant digit and up are only non-zero
in elements yv (where they are 1), the remaining digits of the sum are precisely |{v : yv ∈ X}|;
again by our choice of x, this implies |C| = k. Thus if (S, x) is a Yes instance of Subset-Sum,
then (G, k) is a Yes instance of VC.

Putting the previous two paragraphs together, we’ve shown that (G, k) is a Yes instance of VC if
and only if (S, x) is a Yes instance of Subset-Sum, so we have a valid Karp reduction from V C to
Subset-Sum. Together with part (c), we’ve shown that VC ≤K SubsetSum ≤C 0-1 Knapsack,
so since VC is NP-complete it follows that every problem in NP Cook-reduces to 0-1 Knapsack
as required for NP-hardness.

(e) [⋆⋆] Given parts (a) and (d), why have we not just proved P = NP?

Solution: Part a) doesn’t actually imply that 0-1 Knapsack ∈ P. The problem is that while
the algorithm is polynomial in n and V , in order for 0-1 Knapsack to be in P it would need to
be polynomial in the input size — and the input size is Θ(n+ log V), since V is represented by
log2 V bits. So despite being polynomial in n and V , and despite being reasonable for many
applications where V is relatively small, it actually runs in time exponential in the input size!
(Notice that we relied on this in part (d), too — if we tried to solve VC by reducing to 0-1
Knapsack, then the instance we got would have an exponentially large value of V .)

Page 11 of 11

