
COMS20010 — Problem sheet 2

This problem sheet covers week 2, focusing on greedy algorithms and graphs.

1 Greedy Algorithms

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. At most 10% of marks in the exam will be
from questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

1. Here we will consider the set cover problem. Given a set of elements U = {1, 2, . . . , n} (called the
universe), and a collection of subsets of U , S = {A,B,C, . . . } ∈ P(U), we want to find a subset
of elements of S whose union contains the entirety of U . For example, suppose U = {1, 2, 3} and
S = {{1, 2}, {1}, {3}}. Then {{1, 2}, {3}}} is the smallest solution to the set cover problem. Note that
{{1, 2}, {3}, {1, 2, 3}} is also a solution, but is of larger size.

(a) [⋆⋆] Consider the instance of the set cover problem given by

U = {1, 2, 3, 4, 5}, S =
{
{1, 2, 3}, {3, 4, 5}, {5}, {2, 3, 4}, {1, 2}

}
.

What is a smallest solution to this instance? What is the largest solution?

Solution: {{1, 2, 3}, {3, 4, 5}} is a smallest solution (although there are several others), and S
itself is the largest solution.

(b) [⋆⋆] Consider this greedy algorithm to solve the set cover problem.

Page 1 of 14

Algorithm: GreedySetCover(U, S ∈ P(U))

1 begin
2 Initialise Sol, covered← ∅.
3 while covered ̸= U do
4 Let I be an element of S maximising |I \ covered|.
5 If I ⊆ covered, return No solution.
6 Set Sol← Sol ∪ {I} and covered← covered ∪ I.

7 Return Sol.

Run this algorithm using U and S from part (a), showing the value of Sol at each iteration.

Solution: Let Si be the value of Sol at the start of the i’th iteration of the while loop.
Then depending on how ties are handled, we might have e.g. S1 = ∅, S2 = {1, 2, 3} S3 =
{{1, 2, 3}, {3, 4, 5}}, and the algorithm returns S3 and halts before the fourth iteration.

(c) [⋆⋆] Give an example instance of set cover (i.e. values for U and S) for which no solution exists.
How does GreedySetCover go wrong on such an instance? How can it be modified to efficiently
deal with this?

Solution: One example is U = [5], S = {{3}}. In this case, the while loop will add {3} to Sol

in the first iteration, then take I = {3} a second time and return No solution.

(d) [⋆⋆⋆] Give a loop invariant which would allow us to prove by induction that GreedySetCover
terminates and outputs a valid set cover (i.e. that it is a valid algorithm for the problem).

Solution: There are many such loop invariants. One of them is that at the start of the
i’th iteration of lines 3–6, Sol is a subset of S, covered is the union of all sets in Sol,
and |covered| ≥ i − 1. (At i = 0 the invariant is maintained trivially, and we can see it’s
maintained from lines 3–6, so it’s valid by induction. Moreover, we have covered ⊆ U and
hence |covered| ≤ n, so the loop must terminate within n iterations. When it does, we have
covered = U and so S is a set cover.)

(e) [⋆⋆⋆] Suppose we are instead interested in the size of a minimum set cover, i.e. that we wish to
ensure Sol is as small as possible. Show that GreedySetCover does not always give a minimum
set cover, by giving an instance (U, S) on which it gives an answer larger than the minimum. Extend
your answer to show that there are arbitrarily large instances on which GreedySetCover fails.

Solution: There are many possible answers here — this is only one of them. Let U = [6]
and S = {{1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}}. Any cover has to include {1, 2, 3} (in order to cover
1) and {4, 5, 6} (in order to cover 6), so the minimum cover size is at least two. Conversely,
{{1, 2, 3}, {4, 5, 6}} is a set cover, so the minimum cover size is exactly two, and the only
minimum cover is {{1, 2, 3}, {4, 5, 6}}. However, GreedySetCover will choose {2, 3, 4, 5}
first, resulting in a cover of size three.

To come up with counterexamples like this for general greedy algorithms, one useful trick is
to start out with the thing you want to be optimal (here the cover {{1, 2, 3}, {4, 5, 6}}), then
add more choices to the input to fool the greedy algorithm into choosing suboptimally (here
{2, 3, 4, 5}).
We can extend this example to arbitrarily large instances by taking a bunch of disjoint copies.

Page 2 of 14

Let t ≥ 1, and let

U = [6t], S = S1 ∪ S2 where

S1 = {{1, 2, 3}, {7, 8, 9}, . . . , {6t− 5, 6t− 4, 6t− 3}},
S2 = {{4, 5, 6}, {10, 11, 12}, . . . , {6t− 2, 6t− 1, 6t}},
S3 = {{2, 3, 4, 5}, {8, 9, 10, 11}, . . . , {6t− 4, 6t− 3, 6t− 2, 6t− 1}}.

Then exactly as before, every set cover must include every set in S1 (to cover 1, 7, 13, . . .) and
every set in S2 (to cover 6, 12, 18, . . .), and the only minimum cover is S1 ∪ S2 which has size
2t. But GreedySetCover will include every set in S3 first, resulting in a cover of size 3t. By
choosing t large, we can find counterexamples as large as we like.

Of course, we could have made this example neater by e.g. including only a single set in S3,
but this trick of taking disjoint copies is a good way of “blowing up” counterexamples to most
greedy algorithms, and this is the most straightforward way of applying the trick. Notice how
the ratio between the answer returned by GreedySetCover and the correct answer is the
same in the small counterexample and the large one — this is generally true when we construct
counterexamples this way.

This question is set at roughly the difficulty of a “medium”-level counterexample-finding ques-
tion on the exam. (See the unit page for what this means.)

(f) [⋆⋆⋆⋆] Now show that the set cover returned by GreedySetCover can be ω(1) times larger than
the minimum set cover, i.e. larger by a factor that grows arbitrarily large as the input size increases.
(Hint: One way of doing this has a minimum set cover with 2 sets, and chooses U with |U | = 2 · 3t
for any t ≥ 1.)

Solution: Again, there are many possible answers here, and this is only one of them. Let
t ≥ 1, and let U = {(i, j) : i ∈ {1, 2}, j ∈ [3t]}. (I’m defining U this way to make the notation
nicer, but you could just as well take U = [2 · 3t].) Let S = {C1, C2, X1, . . . , Xt−1}, where

C1 = {(1, 1), (1, 2) . . . , (1, 3t)},
C2 = {(2, 1), (2, 2) . . . , (2, 3t)},
Xk = {(i, j) : i ∈ [2], 3t−k < j ≤ 3t−k+1} for all k ∈ [t− 1].

There is a minimum cover of size 2, since {C1, C2} is a cover. However, C1 and C2 only cover 3t

elements each, while X1 covers 4 · 3t−1, so the algorithm will first choose X1. Of the remaining
uncovered elements, C1 and C2 only cover 3t−1 elements each, while X2 covers 4 · 3t−2, so the
algorithm will next choose X2. It is not hard to prove by induction that for all k ∈ [t− 1], the
k’th set the algorithm chooses is Xk, and that this leaves 3t−k uncovered elements in each of
C1 and C2 while not covering any elements in Xk+1 ∪ · · · ∪Xt−1. The algorithm will then have
to pick C1 and C2 anyway, in order to cover (1, 1) and (2, 1), so the total cover size is t.

Rephrasing things in terms of |U |, we have shown that the set cover returned by GreedySet-
Cover can be too large by a factor of (t+1)/2 = (log3(|U |/2)+1)/2 ∈ Θ(log |U |). Proving this
isn’t part of the question, but this turns out to be best possible — the algorithm does indeed
always return something within Θ(log |U |) of a minimum set cover. In fact, with a lot more
work it’s possible to show that the greedy algorithm works to within a factor (1 + o(1)) ln |U |,
and it’s impossible to do better than this with any algorithm unless P = NP — a topic we
will discuss much later in the course.

This question is set at roughly the difficulty of a “long”-level counterexample-finding question
on the exam. (See the unit page for what this means.)

Page 3 of 14

2. [⋆⋆] You are trying to check whether a log file contains a specific sequence of events, some of which
may be duplicates. Since the log file contains records for the whole system, the events may not occur
consecutively, but you know they will occur in order. Formally, you are given a key sequence of events
a1, . . . , am and a log sequence of events b1, . . . , bn with n ≥ m, and you are able to check whether two
events are equal in O(1) time. Give a greedy algorithm to check whether b1, . . . , bn contains a key
subsequence — indices i1 < i2 < · · · < im ∈ [n] such that bij = aj for all j ∈ [m] — and to output a key
subsequence if one exists. Your algorithm should run in O(n) time; prove it works.

Solution: Informally, we iterate through b1, . . . , bn, looking for a1. When we find it, we add it to
the output and keep going, looking for a2. When we find it, we add that to the output and keep
going, looking for a3, and so on up to am. If we succeed in finding a1, . . . , am in b1, . . . , bn this way
then we output their indices, and otherwise we output that no key subsequence exists. Formally,
the algorithm reads as follows.

Algorithm: CheckSubsequence([a1, . . . , am], [b1, . . . , bn])

1 begin
2 Initialise nexti← 1 and i← [].
3 foreach j ∈ [1, . . . , n] do
4 if b[j] = a[nexti] then
5 Set I[nexti] = j.
6 if nexti = m then
7 Return I.

8 Set nexti← nexti+ 1.

9 Return “key subsequence does not occur”.

You could prove via a loop invariant that CheckSubsequence will output the following sequence
I1, . . . , Im, if it exists:

I1 = min{j : a1 = bj},
Ik+1 = min{j > Ik : ak+1 = bj}.

It is clear that if I1, . . . , Im exists then it is a key subsequence, so it remains to prove that if a key
subsequence i1, . . . , im exists then so does I1, . . . , Im. We will do so using an “exchange” argument
to turn i1, . . . , in into I1, . . . , Im (although a “greedy stays ahead” argument would also work).

We prove by induction on j that for all 0 ≤ j ≤ m, we have that I1, . . . , Ij , ij+1, . . . , im is a key
subsequence. The base case at j = 0 is immediate, so suppose that I1, . . . , Ij , ij+1, . . . , im is a key
subsequence for some 0 ≤ j ≤ m− 1; then we must prove that I1, . . . , Ij+1, ij+2, . . . , im is also a key
subsequence. Since I1, . . . , Ij , ij+1, . . . , im is a key sequence, we already know that

I1 < I2 < · · · < Ij < ij+1 < ij+2 < · · · < im,

bIk = ak for all k ∈ [j],

bik = ak for all k ∈ {j + 1, . . . ,m}.

It remains only to prove that Ij+1 exists and Ij+1 < ij+2. Recall that Ij+1 is defined as the least
index greater than Ij satisfying bIj+1

= aj+1. We know from the above that ij+1 > Ij and that
bij+1 = aj+1, so Ij+1 exists and is at most ij+1; in particular, this implies Ij+1 < ij+2 < · · · < im as
required.

An important note: I’ve made this answer quite long to try and make all the steps as easy to
follow as possible. In an exam situation, I would expect much less detail. In particular, I wouldn’t
expect you to state the pseudocode or to prove rigorously that the informal algorithm above will
output I1, . . . , Im.

Page 4 of 14

3. [⋆⋆⋆] In lectures we showed that substituting the greedy heuristic in our interval scheduling algorithm
GreedySchedule with “add the compatible request with the earliest starting time” or “add the com-
patible request which takes least total time” breaks the algorithm. Show that the greedy heuristic “add
the compatible request which renders fewest other requests incompatible” would also fail.

Solution: The heuristic will fail on e.g. the following input:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

That is,R = [(1, 3), (4, 6), (7, 9), (10, 12), (2.5, 4.5), (2.5, 4.5), (2.5, 4.5), (5.5, 7.5), (8.5, 10.5), (8.5, 10.5),
(8.5, 10.5)]. The modified algorithm will take (5.5, 7.5) at the first step, since everything else isn’t
compatible with at least three requests, and there is no maximum compatible set containing (5.5, 7.5).
The specific numbers aren’t important — what matters is the picture.

4. [⋆⋆⋆⋆] You are consulting for a trucking company that does a large amount of business shipping packages
from New York to Boston. The volume is high enough that they have to send a number of trucks each
day between the two locations. Trucks have a fixed limit W on the maximum weight they are allowed
to carry. Boxes arrive at the New York station one by one, and each package i has a weight wi ≤ W .
The trucking station is quite small, so at most one truck can be at the station at any time. Company
policy requires that boxes are shipped in the order they arrive; otherwise, a customer might get upset
upon seeing a box that arrived after his make it to Boston faster. At the moment, the company is using
a simple greedy algorithm for packing: they pack boxes in the order they arrive, and whenever the next
box does not fit, they send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion on whether the
situation can be improved. Perhaps one could decrease the number of trucks needed by sometimes
sending off a truck early, allowing the next few trucks to be better packed?

Prove that this is not the case — that for any given number k of packages, the greedy algorithm they
are currently using minimises the number of trucks they need subject to their other constraints. (Hint:
Use an argument like the one we used for GreedySchedule...)

Solution: Let’s denote our trucks by T1, . . . , Tk, so that our assignments of packages to trucks are
functions f : {1, . . . , k} → {T1, . . . , Tk}. As in GreedySchedule, we will show that the output f
of the company’s greedy algorithm “stays ahead” of any optimal solution g. More specifically, we
will show by induction that for all i, either:

(i) f(i) = Tj and g(i) = Tℓ for some j < ℓ; or

(ii) f(i) = g(i) = Tj for some j, and ∑
x≤i : f(x)=Tj

wx ≤
∑

x≤i : g(x)=Tj

wx.

Page 5 of 14

In other words, when package i is shipped, either f is ahead by a whole truck, or f and g are adding
packages to the same truck but f ’s truck currently contains less weight.

For i = 1 this is immediate, since f(1) = T1 and g(1) = Tj for some j ≥ 1. Suppose it holds for
some i ≥ 1. Then by induction we have two cases.

Case 1: f(i) = Tj and g(i) = Tℓ for some j < ℓ. Then (i) holds for i+ 1 unless ℓ = j + 1 and
f(i+ 1) = g(i+ 1) = Tj+1. In this case, we have∑

x≤i+1: f(x)=Tj+1

wx = wi+1 ≤
∑

x≤i+1: g(x)=Tj+1

wx,

so (ii) holds for i+ 1 and we’re done.

Case 2: f(i) = g(i) = Tj for some j and
∑

x≤i : f(x)=Tj
wx ≤

∑
x≤i : g(x)=Tj

wx. Since f
will add package i+ 1 to truck Tj if possible, and f currently puts as most as much weight in Tj as
g does, (i) holds for i+ 1 unless f(i+ 1) = g(i+ 1). If f(i+ 1) = g(i+ 1) = Tj+1, then we have∑

x≤i+1: f(x)=Tj+1

wx = wi+1 =
∑

x≤i+1: g(x)=Tj+1

wx,

so (ii) holds for i+ 1 and we’re done. Otherwise, we have f(i+ 1) = g(i+ 1) = Tj , so we have∑
x≤i+1: f(x)=Tj

wx = wi+1 +
∑

x≤i : f(x)=Tj

wx ≤ wi+1 +
∑

x≤i : g(x)=Tj

wx =
∑

x≤i+1: g(x)=Tj

wx,

so again (ii) holds for i+ 1 and we’re done.

5. Consider a variant of the interval scheduling problem where we have multiple “satellites” available, and
wish to satisfy all our requests while using as few of them as possible. Formally: writing our input as
R = [(s1, f1), . . . , (sn, fn)], instead of finding a maximum compatible set of requests, we must partition
R into as few disjoint compatible sets as possible.

(a) [⋆⋆⋆⋆⋆] Prove that the following greedy algorithm returns the correct answer. (Hint: Rather than
proving optimality directly, try to find a nice lower bound on the size of a minimum partition, and
show the algorithm produces something which matches it.)

Algorithm: GreedyPartition

1 begin
2 Sort R according to start time, so that s1 ≤ · · · ≤ sn.
3 Initialise A1, . . . , An = [].
4 for i ∈ {1, . . . , n} do
5 Find the least j such that (si, fi) is compatible with Aj .
6 Append (si, fi) to Aj .

7 Return the collection of non-empty lists Aj .

Solution: To avoid an annoying notation clash, write I(a, b) for the real open interval {x ∈
R : a < x < b}. (Normally we’d just write (a, b), but we’re already using (si, fi) to denote a
request...)

Define the depth d of R to be the maximum size of a multiset S = {(S1, F1), . . . , (Sk, Fk)} ⊆ R
such that I(S1, F1) ∩ · · · ∩ I(Sk, Fk) ̸= ∅. In particular, this means that every pair of requests
in S is incompatible, so if we partition R into compatible sets then every element of S must go
into a different set. Thus an optimal partition must contain at least d sets.

Page 6 of 14

We will now show that GreedyPartition outputs a partition with at most d sets. In partic-
ular, this implies that the optimal partition has exactly d sets, so GreedyPartition outputs
an optimal partition.

Suppose GreedyPartition assigns (si, fi) to Aj . Then there are intervals (S1, F1) ∈ A1, . . . ,
(Sj−1, Fj−1) ∈ Aj which are incompatible with (si, fi). Since R is in sorted order, we have
S1, . . . , Sj−1 ≤ si. Since they are incompatible with (si, fi), it follows that F1, . . . , Fi−1 > si.
So we have I(S1, F1)∩· · ·∩I(Sj−1, Fj−1)∩I(si, fi) ̸= ∅— for example, the intersection contains
the point si + (min{F1, . . . , Fj−1, fi} − si)/2. By the definition of d, it follows that j ≤ d. In
particular, GreedyPartition assigns every request to some list A1, . . . , Ad, so it outputs an
optimal partition as required.

(b) Is the sorting step in line 2 necessary?

Solution: The sorting step is necessary — the algorithm may fail without it if e.g. R =
[(1, 3), (2, 5), (6, 8), (4, 7)]. The greedy algorithm without the sorting step will produce an output
of A1 = [(1, 3), (6, 8)], A2 = [(2, 5)], A3 = [(4, 7)]:

0 1 2 3 4 5 6 7 8 9

A1

A2

A3

But on adding the sorting step back in we obtain an optimal partition, A1 = [(1, 3), (4, 7)],
A2 = [(2, 5), (6, 8)]:

0 1 2 3 4 5 6 7 8 9

A1

A2

2 Graph Theory

Hint: It can be extremely useful to draw a graph with the property you are trying to consider.

6. In this question we will consider the following graph G.

a b

c d e

f g

h

(a) [⋆⋆] How many components does G have?

Page 7 of 14

Solution: Two, namely the induced subgraphs G[{a, b, c, d, e}] and G[{f, g, h}].

(b) [⋆⋆] Is {f, g, h} a component of G?

Solution: Technically no — this is a type error. Components are graphs, and {f, g, h} is just
a set of vertices. But the graph G[{f, g, h}] induced by {f, g, h} is a component.

(c) [⋆⋆] What is the degree of vertex c?

Solution: Three.

(d) [⋆⋆] How many paths are there from vertex a to vertex d? List them.

Solution: Five, namely ad, abd, acd, abcd and acbd.

(e) [⋆⋆] How many walks are there from vertex a to vertex d?

Solution: Infinitely many. For example, ad, adad, adadad and so on are all walks from vertex
a to vertex d.

(f) [⋆⋆] Draw the graph G[{a, b, d}] induced by the set of vertices {a, b, d}.

Solution: Any triangle with vertices labelled a, b and d is fine. (Remember, how you draw a
graph doesn’t matter as long as all the vertices and edges are present.)

(g) [⋆⋆] Is G[{a, b, d}] isomorphic to G[{f, g, h}]?

Solution: No. Suppose f was an isomorphism from G[{a, b, d}] to G[{f, g, h}]. Then since
isomorphisms map edges to edges, and every edge is present in G[{a, b, d}], every edge would
also have to be present in G[{f, g, h}], which isn’t true.

(h) [⋆⋆] Is G[{c, d, e}] isomorphic to G[{f, g, h}]?

Solution: Yes. For example, the “relabelling” map f(c) = f , f(d) = g and f(e) = h maps the
edge {c, d} to the edge {f, g}, the edge {d, e} to the edge {g, h}, and the non-edge {c, e} to the
non-edge {f, h}.

(i) [⋆⋆] Does G[{a, b, c, d}] contain an Euler walk?

Solution: Recall from lectures that a graph contains an Euler walk if and only if it’s connected
and either every vertex has even degree or all but two vertices have even degree. G[{a, b, c, d}]
is connected, but contains four vertices of odd degree, so it doesn’t have an Euler walk.

7. (a) [⋆⋆] Let G be a graph containing vertices u and v. Show that any walk from u to v contains a path
from u to v. (Hint: Try induction based on the length of the walk.)

Solution: We proceed by induction on the length ℓ of the walk. Taking ℓ = 1 as our base case,
we observe that any length-1 walk from u to v contains a single edge, so it must be a path. For

Page 8 of 14

the induction step, suppose that for some ℓ ≥ 1, we have that any walk from u to v of length
at most ℓ contains a path from u to v. Let W = x1x2 . . . xℓ+2 be a length-(ℓ+ 2) walk from u
to v; we must show that it contains a path from u to v.

If W is a path, then we are done. If not, W must contain some vertex more than once, say as
both xi and xj with i < j. Then W− = x1 . . . xixj+1 . . . xℓ+2 is also a walk, since xi = xj , and
it has length less than ℓ+ 1. By our induction hypothesis applied to W−, it follows that W−

(and hence W) contains a path.

(There are many different ways of phrasing this argument, but the basic idea here is to repeat-
edly delete redundant segments from your walk until you’re left with a path.)

(b) [⋆⋆⋆] Let G be a connected graph. Show that any two longest paths in a connected graph must
have at least one vertex in common. (Here “two longest paths” means that both paths have the
same length, and no other path in the graph is longer.)

Solution: Let G be a connected graph, and let Px = x1 . . . xt and Py = y1 . . . yt be two longest
paths in G. Suppose for a contradiction that Px and Py do not intersect. Since G is connected,
there is a path Q = z1 . . . xr from xt to y1. We will find a path in PxQPy with length greater
than t. (Note that PxQPy may not itself be a path, as Q might intersect Px and Py.)

Let i = max{k : zk ∈ {x1, . . . , xt}} be the index at which Q last intersects Px. Choose I such
that xI = zi. Let j = min{k > i : zk ∈ {y1, . . . , yt} be the first index after x at which Q
intersects Px, and choose J such that yJ = zj . All vertices in {x1, . . . , xt}, {y1, . . . , yt} and
{zi+1, . . . , zj−1} are distinct by construction, so we now have a situation similar to the one
shown below with t = 5.

x1 x2 x3 x4 = zi x5

y1 y2 y3 = zj y4 y5

zi+1

Let R1 be whichever path is longer out of x1x2 . . . xi or xtxt−1 . . . xi (or the first if there is a
tie). Let R2 be whichever path is longer out of y1y2 . . . yi or ytyt−1 . . . yi (or the first if there
is a tie). Then R1zi+1 . . . zj−1R2 is a path. The lengths of R1 and R2 are both at least t/2,
and there is at least one edge joining them even if j = i+ 1, so the total length of this path is
at least t + 1. But Px and Py have length t and were meant to be longest paths, so this is a
contradiction and they must intersect.

8. Let G be a graph. To construct the line graph of G, L(G), we define the vertices to be the edges of G,
and say that two vertices of L(G) (i.e. two edges of G) are connected by the edge in L(G) if they have a
non-empty intersection. For example, if G has edges {1, 2} and {3, 4}, then the vertex set of L(G) will
be {{1, 2}, {3, 4}} and the edge set of L(G) will be empty.

(a) [⋆⋆] For each of these graphs G, draw its line graph L(G).

i.
a

b

c

Page 9 of 14

Solution:
{a, b} {b, c}

{a, c}

ii.

a

b
c

d
e

Solution:

{a, b}

{b, c}

{c, d}

{d, e}

{e, a}

{a, c}

iii.
a b c d

Solution:

{a, b} {b, c} {c, d}

(b) [⋆⋆⋆] For each of the following graphs H, give a graph G such that L(G) is isomorphic to H.

i.

Solution: Many graphs have this line graph, but one example has vertex set [5] and edge
set {{1, 2}, {1, 3}, {1, 4}, {1, 5}}.

ii.

Solution: The only graph with this line graph (up to isomorphism) is the graph with
vertex set [4] and edge set {{1, 2}, {1, 3}, {2, 3}, {1, 4}}, i.e. a triangle with an edge hanging
off.

(c) [⋆⋆⋆] The claw graph is shown below. Show that if a graph H is a line graph, i.e. if H = L(G) for
some graph G, then H doesn’t contain any induced subgraph isomorphic to the claw. (Hint: First
show that the claw itself is not isomorphic to any line graph.)

Page 10 of 14

Solution: We first show that the claw graph itself is not isomorphic to any line graph. Suppose
that G is a graph with L(G) isomorphic to the claw graph. Let e1 be the edge of G with degree
3 in L(G), and let e2, e3 and e4 be the other edges of G. Then e2, e3 and e4 must all intersect
e1 (since they are joined to it by edges in L(G)), but cannot intersect each other (since they
are not joined to each other by edges in L(G)). This is impossible — e.g. by the pigeonhole
principle, the three sets e2∩ e1, e3∩ e1 and e4∩ e1 are all contained in e1, and |e1| = 2, so some
two must overlap. We have shown that the claw graph is not isomorphic to any line graph.

Now let H be a graph with an induced subgraph isomorphic to a claw, say H[F] for some
F ⊆ V (H), and suppose that H = L(G) for some G. Then consider the subgraph G− of G
formed by deleting all edges except those in F . We will have L(G−) = H[F], and so H[F] is a
line graph — which we have already shown is impossible.

We have shown that all line graphs are claw-free. Claw-free graphs are important because a lot
of problems have efficient algorithms for claw-free graphs, but not for general graphs.

9. [⋆⋆⋆] A closed Euler walk is an Euler walk from a vertex to itself. Suppose G is a graph with exactly
two connected components C1 and C2, each of which has more than one vertex. Suppose the graphs
induced by C1 and C2 each have a closed Euler walk. What is the least number of edges we can add to
G to give it a closed Euler walk?

Solution: The answer is three edges unless both C1 and C2 are cliques (i.e. every vertex is adjacent
to every other vertex), in which case it becomes four edges.

We first show that four edges always suffice. Recall from lectures that a graph has a closed Euler
walk if and only if it is connected and each of its vertices has even degree; hence every vertex of G
has even degree. Let a, b ∈ V (C1) and c, d ∈ V (C2) be distinct; then we form H from G by adding
the edges {a, c}, {a, d}, {b, c} and {b, d}. For all v ∈ V (H), we have

dH(v) =

{
dG(v) if v /∈ {a, b, c, d},
dG(v) + 2 otherwise,

so every vertex of H has even degree. Moreover, the edge {b, c} connects C1 to C2, so H is connected.
Thus H has a closed Euler walk.

If in addition C1 (say) is not a clique, then we can take a and b to be non-adjacent, and instead add
the edges {a, b}, {b, c} and {a, c}, which works for the same reasons.

We now show that three or four edges are necessary. Suppose H is formed by adding edges to G
and that H has an Euler walk. This implies that H is connected, so |E(H)| ≥ |E(G)|+1; let {u, v}
be an edge in E(H) \ E(G). Then dH(u) > dG(u) and dH(v) > dG(v). Since H, C1 and C2 all
have closed Euler walks, all vertex degrees in H and G are even, so we have dH(u) ≥ dG(u) + 2
and dH(v) ≥ dG(v) + 2. Since G cannot have more than one edge between u and v, it follows there
must be at least two more edges {u, x} and {v, y} between C1 and C2, so |E(H) \ E(G)| ≥ 3. If in
addition C1 and C2 are cliques, then we cannot have x = y, and so we have added one edge incident
to each of x and y; since their degrees in G are even, it follows that their degrees in H will will be
odd unless at least one more edge is present. Since H contains a closed Euler walk, all its vertices
must have even degree, so |E(H) \ E(G)| ≥ 4 as required.

10. The complement of a graph G = (V,E) is the graph Gc = (V,E), where E = {{u, v} : u, v ∈ V, u ̸= v}\E.

Page 11 of 14

A graph is self-complementary if it is isomorphic to its complement. Show that:

(a) [⋆] a four-vertex path and a five-vertex cycle are both self-complementary;

Solution: A four-vertex path is isomorphic to the graph G with V (G) = [4] and E(G) =
{{1, 2}, {2, 3}, {3, 4}}. Its complement Gc has edge set {{3, 1}, {1, 4}, {4, 2}}, again a four-
vertex path. An isomorphism is given by 1 7→ 3, 2 7→ 1, 3 7→ 4 and 4 7→ 2.

A five-vertex cycle is isomorphic to the graph G with V (G) = [5] and E(G) = {{1, 2}, {2, 3},
{3, 4}, {4, 5}, {5, 1}}. Its complement Gc has edge set {{1, 3}, {3, 5}, {5, 2}, {2, 4}, {4, 1}}, again
a five-vertex cycle. An isomorphism is given by 1 7→ 1, 2 7→ 3, 3 7→ 5, 4 7→ 2, 5 7→ 4. Both of
these should be obvious if you draw pictures.

(b) [⋆⋆⋆] every self-complementary graph is connected;

Solution: Suppose that G is disconnected, and let its components be G1, . . . , Gr. Then no
edges between V (G1), . . . , V (Gr) are present in G, so all edges between V (G1), . . . , V (Gr) must
be present in Gc. Then Gc is connected; indeed, let u and v be two vertices of Gc. If they lie
in two different components of G, then they are joined by an edge in Gc. Otherwise, they lie
in the same component, and have a common neighbour in some other component. We have
shown that if G is disconnected, then Gc is connected. Since (Gc)c = G, it also follows that if
Gc is disconnected then G is connected.

Now suppose G is self-complementary. This means G is isomorphic to Gc, so they are either
both connected or both disconnected. We’ve just shown they can’t both be disconnected, so
they must both be connected.

(c) [⋆⋆⋆⋆] if G is self-complementary, then |V (G)| ≡ 0 or 1 mod 4;

Solution: If G is self-complementary then since G and Gc are isomorphic we must have
|E(G)| = |E(Gc)|. But by the definition of the complement, we have |E(Gc)| =

(
n
2

)
− |E(G)|.

It follows that |E(G)| = |E(Gc)| = 1
2

(
n
2

)
. In particular, this means that 1

2

(
n
2

)
= n(n − 1)/4

must be an integer, which holds if and only if n ≡ 0 or 1 mod 4.

(d) [⋆⋆⋆⋆] every self-complementary graph on 4k + 1 vertices has a vertex of degree 2k.

Solution: For all positive integers i, let Ni be the number of vertices of degree i in G, and
let N c

i be the number of vertices of degree i in Gc. By the definition of the complement, we
have Ni = N c

4k−i; moreover, since G is isomorphic to Gc, we have Ni = N c
i . It follows that

N c
i = N c

4k−i, and likewise Ni = N4k−i.

Suppose for a contradiction that G has no vertices of degree 2k. Then since every vertex has
some degree, and there are 4k + 1 vertices in total, we have

4k + 1 =

4k∑
i=0

Ni = 2

2k−1∑
i=0

Ni +N2k = 2

2k−1∑
i=0

Ni.

But the left-hand side of this equation is odd and the right-hand side is even, so we have our
contradiction.

11. [⋆⋆⋆ and a half] A numbered domino is a rectangle divided into two halves, with a number on each
half. A standard “double six” set of numbered dominoes contains one domino with each possible pair
of numbers from zero to six, for a total of 28. Is it possible to lay them all out in a line so that each
adjacent pair of dominoes agrees, as shown below for four dominoes? What about a “double k” set,

Page 12 of 14

which contains one domino with each possible pair of numbers from zero to k ∈ N? (Hint: I will never
ask a question like this unless there’s a way to solve it quickly with pencil and paper.)

Solution: First note that we can ignore all dominoes with the same number on both sides, as we
can add or remove these freely from a solution not containing them as shown below.

Consider the complete graph on the k+1 vertices {0, . . . , k}, in which every vertex is joined to every
other vertex. There is a natural bijection between edges and the remaining dominos: the edge {i, j}
corresponds to the domino with i on one face and j on the other. A sequence of edges is a valid
walk in the graph if and only if the corresponding dominoes have matching ends. A valid line of
dominoes therefore corresponds to a walk in the graph using every edge exactly once — an Euler
walk.

We know from lectures that a graph has an Euler walk if and only if it is connected and either zero
or two of its vertices have odd degree. Our graph is certainly connected, and all of its k+1 vertices
have degree k, so it has an Euler walk if and only if k = 1 or k is even. In particular, it is possible
to lay out the dominoes from a “double six” set as described.

12. [⋆⋆⋆⋆⋆] Give an example of a self-complementary graph (see Question 3) with infinitely many vertices.

Solution: One way of doing this is to take a four-vertex path, a graph which we already know is
self-complementary from question 3a), and “blow it up” by replacing each vertex with an infinite
set of vertices. For example, for all i ∈ {0, 1, 2, 3}, define Vi to be the set of all integers congruent
to i modulo 4. Then we define our edge set to be:

� all edges internal to V1 or V2;

� all edges between V0 and V1;

� all edges between V1 and V2;

� all edges between V2 and V3.

The complement will then have edge set given by:

� all edges internal to V0 or V3;

� all edges between V2 and V0;

� all edges between V0 and V3;

� all edges between V3 and V1.

Page 13 of 14

These two graphs are then isomorphic under any map taking V0 7→ V2, V1 7→ V0, V2 7→ V3 and
V3 7→ V1. (Draw a picture!)

Here’s a more complicated example. Take the vertex set to be Z, and define the edge set by tossing
a coin for every pair of vertices and joining them if it comes up heads — that is, each edge is present
independently with probability 1/2. Then it turns out that with probability 1, the resulting graph
G∞,1/2 is self-complementary. The really surprising thing about this, though, is that you can
replace 1/2 with any constant 0 < p < 1 and it still works — all these infinite graphs are isomorphic
to each other with probability 1, even though we’d expect a graph where each edge is present with
probability 1/100 to be much “sparser” than one where each edge is present with probability 99/100!

Page 14 of 14

