
COMS20010 — Problem sheet 3

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 3, focusing on directed graphs, Hamilton cycles, the handshaking lemma,
and trees.

1. [⋆⋆] Find a Hamilton cycle in the graph of the icosahedron, drawn below:
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Solution: One Hamilton cycle is given by:

2. (a) [⋆] State the handshaking lemma for undirected graphs.

Solution: Let G be a graph; then
∑

v∈V (G) d(v) = 2|E(G)|.

(b) [⋆⋆] Let G be a graph with six vertices of degree five and two vertices of degree six. How many
edges does G have?

Solution: We have
∑

v∈V (G) d(v) = 6 · 5 + 2 · 6 = 42, so G has 21 edges by the handshaking
lemma.

(c) [⋆⋆] In the distant future, the renowned Sol Ballet Corps is putting on a production to emphasise
a spirit of love and togetherness between human colonies throughout the solar system. They have
4 dancers from Earth, 5 from Mars, 6 from the moon, and 7 from Ceres. They wish to arrange
a procession in which every pair of dancers from different worlds crosses the stage exactly once.
For example, one dancer from Earth will cross alongside one dancer from Mars, but not a pair of
dancers both from Earth. How many pairs of dancers will need to cross the stage in total?

Solution: Model this as a graph G in which the vertices are dancers, and each pair of dancers
from different worlds is an edge — thus the question is asking for the total number of edges
in the graph. Dancers from Earth have degree 18, dancers from Mars have degree 17, dancers
from the moon have degree 16, and dancers from Ceres have degree 15. The pairs of dancers
that cross the stage will be precisely the edges of the graph, and by the handshaking lemma
we have

|E(G)| = 1

2

∑
v∈V (G)

d(v) =
1

2

(
4 · 18 + 5 · 17 + 6 · 16 + 7 · 15

)
= 179.

This question has appeared in a past exam (with a hint to use the handshaking lemma).

(d) [⋆⋆] The strategy game Civilization VI is played on a hexagonal map as shown below. The map
is effectively a cylinder, with the left and right boundaries are joined together, and the top and
bottom boundaries are impassable — thus in the picture below, tile a appears twice, and is adjacent
to both tile b and tile c. Units can move between any pair of adjacent tiles, and this is stored in
memory as a graph in which there is an edge between two tiles if they are adjacent in the map.

Page 2 of ??



a

b

a

c

If the map is 90 tiles wide and 56 tiles high, how many edges does the graph have?

Solution: By the handshaking lemma, the total number of edges is half the total degree of the
graph. There are 90 tiles of degree 5 and 90 tiles of degree 3, with 45 of each along the top
edge and 45 of each along the bottom edge. The remaining 90 · 56− 90 · 2 tiles all have degree
6. Thus the total number of edges is

90 · 54 · 6 + 90 · 5 + 90 · 3
2

= 14940.

This question has appeared in a past exam, as a multiple choice question with a hint to use the
handshaking lemma.

(e) [⋆⋆ but long] In lectures, we mentioned that Hamilton cycles were first studied in the context of
knights’ tours. The graph of an n× n knight’s tour is defined as follows: the vertex set is [n]× [n],
and we join (i, j) to (k, ℓ) if either |i− k| = 1 and |j− ℓ| = 2 or vice versa. (In other words, viewing
the vertices as squares in n× n grid, we join two squares if and only if a knight in chess can move
from one to the other — see the figure below.) Prove that when n ≥ 2, an n× n knight’s tour has
4(n− 1)(n− 2) edges.
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Solution: This is a prime example of a graph where it’s easiest to count edges using the handshaking
lemma, since it’s easy to find the degree of any particular vertex but hard to visualise the graph as
a whole. Let G be an n × n knight’s tour graph. Let’s assume n ≥ 5, since we can just count the
edges by hand for n ≤ 4. For a given vertex (i, j):

(i) if 3 ≤ i, j ≤ n− 2, then (i, j) has degree 8;

(ii) if i = 2 and 3 ≤ j ≤ n− 2, or vice versa, then (i, j) has degree 6;

(iii) if i = 1 and 3 ≤ j ≤ n− 2, or vice versa, then (i, j) has degree 4;

(iv) if i, j ∈ {2, n− 1}, then (i, j) has degree 4;

(v) if i ∈ {2, n− 1} and j ∈ {1, n}, then (i, j) has degree 3;

(vi) if i, j ∈ {1, n}, then (i, j) has degree 2.

This is illustrated in the figure below for an 8× 8 graph.
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In total, there are: (n−4)2 vertices of type (i); 4(n−4) vertices of type (ii); 4(n−4) vertices of type
(iii); 4 vertices of type (iv); 8 vertices of type (v); and 4 vertices of type (vi). In total, we therefore
have ∑

v∈V

d(v) = (n− 4)2 · 8 + 4(n− 4) · 6 + 4(n− 4) · 4 + 4 · 4 + 8 · 3 + 4 · 2

= 8n2 − 24n+ 16 = 8(n− 1)(n− 2).

It follows by the handshaking lemma that

|E(G)| = 1

2

∑
v∈V

d(v) = 4(n− 1)(n− 2).

This question is longer, and with more chances to make a mistake, than anything I’d put on the
exam. But conceptually the difficulty is [⋆⋆], since it’s “just” an application of the handshaking
lemma.

3. [⋆⋆] Let G be a graph.

(a) Show that G is a tree if and only if G is connected, but removing any edge will disconnect it.

(b) Show that G is a tree if and only if G has no cycles, but adding any edge will create a cycle.

Solution: There are many possible approaches to this question! Here’s one.

(a) Suppose G is an n-vertex tree. By the fundamental lemma of trees, G has n − 1 edges and no
cycles. On removing any edge from G, we obtain a new graph G′ which has n − 2 edges and no
cycles. Again by the fundamental lemma, all trees have n− 1 edges, so G′ is not a tree; hence G′ is
disconnected.

Conversely, suppose G is connected, but removing any edge will disconnect it. As proved in lectures,
if G contained a cycle, then we could remove any edge from that cycle without disconnecting G;
hence G contains no cycles. So G is a tree by definition.

(b) Suppose G is an n-vertex tree, and let G′ be the graph formed by adding some edge {u, v}. By
the fundamental lemma of trees, G has a unique path ux1 . . . xkv from u to v; then ux1 . . . xkvu is
a cycle in G′, so G′ is not a tree.

Conversely, suppose G has no cycles, but that adding any edge will create a cycle. If G were
disconnected, then we could add an edge between two of its components without creating a cycle;
thus G must be connected, and hence a tree.

4. [⋆⋆⋆] Let T be a tree whose maximum degree is at least k ≥ 2. Prove that T has at least k leaves. (This
extends the result proved in lectures that any tree with at least two vertices has at least 2 leaves.)

Solution: You can directly adapt the proof used in lectures that any tree has at least two leaves.
Let x be the number of leaves in T . By the handshaking lemma and the fundamental lemma of
trees, writing n = |V (T )|,

1

2

∑
v∈V (T )

d(v) = |E(T )| = n− 1.

Since every non-leaf vertex of T has degree at least 2, and since at least one non-leaf vertex has

Page 5 of ??



degree at least k, we also have ∑
v∈V (T )

d(v) ≥ 2(n− x− 1) + k + x.

Writing 2(n− 1) ≥ 2(n− x− 1) + k + x and solving for x then yields x ≥ k, as required.

Here’s a second way of answering the question. Let v ∈ V (T ) be a vertex of degree at least k, and
let w1, . . . , w∆ be the neighbours of v (where ∆ ≥ k). Since any pair of vertices in a tree is joined by
a unique path, the only path between any pair of v’s neighbours passes through v itself; thus each
vertex wi lies in a distinct component Ci of T − v. Each component Ci is connected (by definition)
and acyclic (since T is acyclic), so it is a tree.

If Ci is the single vertex wi: Then wi is a leaf of T .

Otherwise: Since Ci is a non-trivial tree it has at least two leaves, so it has at least one leaf not
equal to wi. This is also a leaf of T .

In either case, Ci contains a leaf of T . There are ∆ ≥ k components Ci, so the result follows.

5. Let G be the directed graph below.

a

c

g

b j

h

i f

ed

k

ℓ

(a) [⋆⋆] What are d+(j), d−(j), N+(j) and N−(j)?

Solution: We have N+(j) = {c, g, i}, N−(j) = {k}, d+(j) = 3 and d−(j) = 1.

(b) [⋆⋆] Does G have an Euler walk?

Solution: No. For this to be true, there would need to be exactly zero or two vertices v with
d+(v) ̸= d−(v), and there are far more than that: b, c, d, f , h, i, j, k and ℓ.

(c) [⋆] What does it mean for a graph to be strongly connected?

Solution: A graph G is strongly connected if for any pair of vertices u and v in G, there is a
path from u to v. (Equivalently, there is a path from u to v and a path from v to u. Can you
tell why this is equivalent?)
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(d) [⋆⋆] Is G strongly connected? What are the strong components of G?

Solution: G is not strongly connected. The strong components are G[{ℓ}], G[{a, b, i, h}],
G[{c, d, e, f, k, j}] and G[{g}].

(e) [⋆⋆] List all the cycles in G.

Solution: These are abiha, cdkjc and cdefkjc. Notice that you can’t have a cycle spanning
multiple strong components.

(f) [⋆⋆⋆] Show that for any graph G, if X,Y ⊆ V (G) such that G[X] is a strong component of G and
G[Y ] is strongly connected, then either Y ⊆ X or X ∩ Y = ∅.

Solution: For a contradiction, suppose that neither Y ⊆ X nor X ∩ Y = ∅. Then we have
G[X ∪ Y ] ̸= G[X], and we claim G[X ∪ Y ] is strongly connected. If this is true, we have a
contradiction, since we have shown that G[X] is not a maximal strongly connected induced
subgraph of G (and this is the definition of a strong component).

Let u, v ∈ X ∪ Y ; we must find a path in G[X ∪ Y ] from u to v. If u, v ∈ X or u, v ∈ Y ,
then this is immediate since G[X] and G[Y ] are both strongly connected. Suppose u ∈ X and
v ∈ Y . Since X ∩ Y ̸= ∅, there is a vertex z ∈ X ∩ Y . Since G[X] and G[Y ] are both strongly
connected, there is a path in G[X] from u to z and a path in G[Y ] from z to v; by joining these
paths we find a walk from u to v in G[X ∪ Y ]. Every such walk contains a path from u to v,
so we are done. If u ∈ Y and v ∈ X, then the same argument works, joining a path from u to
z in G[Y ] to a path from z to v in G[X].

(g) [⋆⋆] Let c(G) be the following directed graph, sometimes called the condensation of G. The vertices
of c(G) are the strong components of G. If C1 and C2 are strong components of G, then there is an
edge from C1 to C2 in c(G) if and only if there is an edge from some vertex of C1 to some vertex
of C2 in G. Draw c(G).

Solution: Here is the resulting graph.

G[{c, d, e, f, k, j}]

G[{a, b, i, h}] G[{g}]

G[{ℓ}]

(h) [⋆⋆⋆] Show that for all directed graphs G, c(G) contains no cycles.

Solution: For a contradiction, supposeG is a graph such that c(G) contains a cycle C1 . . . CrC1,
where r ≥ 2. We first argue that this corresponds to a cycle in G. By the definition of c(G), for
all i ∈ [r− 1], there must exist vertices xi ∈ V (Ci) and yi ∈ V (Ci+1) such that (xi, yi) ∈ E(G);
likewise there must exist vertices xr ∈ V (Cr) and yr ∈ V (C1) such that (xr, yr) ∈ E(G). Since
C1, . . . , Cr are all strongly connected, for all i ∈ [r−1] there must be a path Pi from yi to xi+1 in
Ci+1; likewise there must be a path Pr from yr to x1 in C1. These paths are all vertex-disjoint,
since C1, . . . , Cr are all disjoint by the previous part. Thus P1 . . . Pr is a cycle in G.

But now we are done by the previous part. Indeed, P1 . . . Pr is strongly connected (since it’s a
cycle), it intersects C1 in Pr, and it intersects C2 in P1. Both C1 and C2 are strong components
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of G, and the previous part implies that V (C1) and V (C2) are both disjoint, so we have a
contradiction.

6. [⋆⋆⋆] Prove that a directed graph G = (V,E) with no isolated vertices contains an Euler walk from
a vertex v to itself if and only if G is strongly connected and every vertex of G has equal in- and
out-degrees. Hint: Try adapting the proof given in lectures for undirected graphs. (This is actually
true for weak connectedness as well — any weakly connected digraph whose vertices have equal in- and
out-degrees is strongly connected — but we won’t prove this in the unit.)

Solution: If G contains an Euler walk from v to itself, then every vertex of G has equal in- and
out-degree as covered in lectures, and G is strongly connected since you can find a walk from u to v
for any pair of vertices u and v by following the Euler walk. It remains to prove the “if” direction.
Suppose that G is strongly connected, and every vertex of G has equal in- and out-degrees.

Essentially as in the undirected case, we proceed by strong induction on |E(G)|. The base case,
where E(G) = ∅, is immediate.

We greedily form a walk W = w0 . . . wk by taking w0 = v, taking each wi to be an arbitrary out-
neighbour of wi−1 such that (wi−1, wi) is not already used in W , and stopping when N+(wi) ⊆
{w0, . . . , wi−1}. Each vertex x has one out-edge in W for each time x appears in {w1, . . . , wi−1},
plus one if x = w0, and one in-edge in W for each time x appears in {w1, . . . , wi−1} plus one if
x = wk.

Suppose wk ̸= w0, for a contradiction. Since we stopped at wk, there must be d+(wk) out-edges
incident to wk in W , and so wk appears d+(wk) times in {w1, . . . , wk−1}. Thus wk has d+(wk) + 1
incident in-edges in W . But d+(wk) + 1 = d−(wk) + 1 > d−(wk), so this is impossible. Thus
wk = w0 = v, and we have found a non-trivial directed cycle containing v. (This mirrors the first
part of the proof in the undirected setting.)

Now, let the non-trivial strong components of the graph G−W formed by removing W ’s edges from
G be C1, . . . , Cr. Since G is strongly connected, for each i there must be a vertex on W which lies
in Ci. Every vertex in G−W has equal in- and out-degrees, and the strong components of G−W
are strongly connected by definition, so by induction each Ci contains an Euler walk Wi from vi to
itself. Without loss of generality, v1 appears on W first, followed by v2, and so on up to vr. Then
we obtain an Euler walk from v to v in G by following W until reaching v1, then following W1 to
the end, then following W until reaching v2, then following W2, and so on until following W back
to v. (This mirrors the second part of the proof in the undirected setting.)

7. [⋆⋆⋆] In lectures we showed that when n is even, Dirac’s theorem for n-vertex graphs can’t be improved
by lowering the degree threshold from n/2 to n/2 − 1. Prove that when n is odd, Dirac’s theorem
can’t be improved by lowering the degree threshold from n/2 to ⌊n/2⌋. (Hint: Try considering a graph
containing every possible edge between two sets of vertices.)

Solution: Let n be odd, say n = 2k+1; then we must find an n-vertex graph with minimum degree
at least ⌊n/2⌋ = k and no Hamilton cycle. Let X be a set of k vertices, let Y be a set of k+1 vertices,
and define a graph G with vertex set X ∪ Y and edge set {{x, y} : x ∈ X, y ∈ Y }. Then G has n
vertices and minimum degree k. Moreover, suppose for a contradiction that C = v1v2 . . . v2k+1v1 is
a Hamilton cycle in G. Without loss of generality, v1 ∈ X. Then since X and Y don’t contain any
edges, we must have v2 ∈ Y , v3 ∈ X, and so on — in general, we will have vi ∈ X if i is odd and
vi ∈ Y if i is even. In particular, we must have v2k+1 ∈ X; but this means v2k+1 and v1 cannot be
adjacent, and we have our contradiction.
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8. A tournament is a directed graph in which every pair of vertices has exactly one edge between them
(in one direction) — the name comes from thinking of the graph as a competition, where if the edge
between x and y is directed towards y then x beat y in their match.

(a) [⋆⋆⋆⋆] Prove that any n-vertex tournament contains a vertex of out-degree at least (n− 1)/2.

Solution: Any tournament contains exactly
(
n
2

)
edges, so by the handshaking lemma we have

∑
v∈V

d+(v) =

(
n

2

)
.

Suppose every vertex had degree strictly less than (n− 1)/2. Then we would have∑
v∈V

d+(v) < n · n− 1

2
=

(
n

2

)
,

which is a contradiction.

(b) [⋆⋆⋆⋆⋆] An out-dominating set in a digraph G = (V,E) is a set X ⊆ V such that for all vertices
v ∈ V \ X, there is an edge from some vertex in X to v. Prove that any n-vertex tournament
contains an out-dominating set of size O(log n), and give an algorithm to find it. (Hint: Part (a)
is helpful for this.)

Solution: Let T = (V,E) be an n-vertex tournament. We carry out the following algorithm.
Let X0 = ∅. Given Xi for some i ≥ 0, let Yi ⊆ V be the set of vertices that do not receive an
edge from Xi; thus Xi is a dominating set in T [V \ Yi]. If Yi = ∅ then Xi is a dominating set
for T , and we terminate; let I = i. Otherwise, by part (a), T [Yi] contains a vertex of out-degree
at least (|Yi| − 1)/2; form Xi+1 by adding this vertex to Xi. This process must terminate with
some dominating set XI , since |Y1| > · · · > |Yi| > 0 for all i > 0.

It remains to prove that I = O(log n). Since |Y0| = n and |Yi| ≤ |Yi|/2 for all i, it follows from
an easy induction argument that |Yi| ≤ n/2i for all i. Moreover, we have |YI−1| > 0, and |YI−1|
is an integer, so |YI−1| ≥ 1; thus 1 ≤ n/2I−1. Rearranging, we obtain I ≤ (log n)+1 ∈ O(log n)
as required.

This was originally proved by Erdős, and it is excessively useful as a building block in arguments
and algorithms to find larger and more complicated structures in tournaments.

(c) [⋆⋆⋆] Prove that any n-vertex tournament contains an in-dominating set of size O(log n). (Hint:
This can be done very quickly without rewriting your answers for (a) and (b).)

Solution: Let T be an n-vertex tournament. Let T ′ be the tournament formed by reversing
all the edges of T , so that (a, b) ∈ E(T ′) if and only if (b, a) ∈ E(T ). By part (b), T ′ contains
an out-dominating set X with size O(log n), so that X sends an edge to every vertex of V \X.
But then in T , X receives an edge from every vertex of V \X, so X is an in-dominating set
as required.

It is often much easier to use an existing result or algorithm in a clever way than to come up
with a new one — this will be one of the major themes of the course.

9. In lectures, we showed that we can’t strengthen Dirac’s theorem by lowering the minimum degree bound.
This question is about strengthening Dirac’s theorem in another direction. Let G be an n-vertex graph
with n ≥ 3. For all pairs {u, v}, we write G + {u, v} for the graph formed from G by adding {u, v} as
an edge, i.e. G+ {u, v} = (V (G), E(G) ∪ {{u, v}}).
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(a) [⋆⋆⋆⋆] Show that if d(u) + d(v) ≥ n, then G contains a Hamilton cycle if and only if G + {u, v}
contains a Hamilton cycle. (Hint: You will need to use an idea from the proof of Dirac’s theorem
in lectures.)

Solution: If G contains a Hamilton cycle C, then C is also a Hamilton cycle in G+ {u, v} —
so it remains to prove the other direction. Suppose C is a Hamilton cycle in G + {u, v}. If
C doesn’t contain the edge {u, v}, then C is also present in G and we’re done, so suppose C
does contain {u, v}. As in the proof of Dirac’s theorem, we will now “rotate” C to find a new
Hamilton cycle C ′ which does not contain {u, v}, and hence is also present in G.

Write C = c1 . . . cn, where c1 = u and cn = v. Let

S = {ci : {u, ci} ∈ E and {v, ci−1} ∈ E}.

Note that if S is non-empty, containing some vertex ci, then we are done: cici+1 . . . cnci−1ci−2 . . . c1
is a Hamilton cycle not containing {u, v}, and hence also a Hamilton cycle in G. As in the
proof of Dirac’s theorem, we prove S is non-empty using the pigeonhole principle. We can write
S = S1 ∩ S2, where

S1 = {ci : {u, ci} ∈ E},
S2 = {ci : {v, ci−1} ∈ E}.

We have |S1| = d(u) and |S2| = d(v), so by hypothesis we have |S1| + |S2| ≥ n. Both sets
are contained in {c2, . . . , cn}, which has only n − 1 elements, so by the pigeonhole principle
S = S1 ∩ S2 must be non-empty as required.

(b) [⋆⋆⋆] Show that if d(u) + d(v) ≥ n for all non-adjacent u, v ∈ V (G), then G contains a Hamilton
cycle;

Solution: We repeatedly apply part (a) to turn G into the complete graph (in which every
edge is present). Let G1 = G and let t =

(
n
2

)
−|E(G)|. For all i ∈ [t−1], form Gi+1 from Gi by

adding an edge between two arbitrary non-adjacent vertices ui and vi; thus Gt is the complete
graph. By hypothesis, dGi

(ui) + dGi
(vi) ≥ dG(ui) + dG(vi) ≥ n, so Gi+1 contains a Hamilton

cycle if and only if Gi does. Thus G1 = G contains a Hamilton cycle if and only if the complete
graph Gt does. And it is easy to find a Hamilton cycle in Gt, since every edge is present — for
example, writing V (G) = [n], 12 . . . n is a Hamilton cycle in Gt.

Note that this result implies Dirac’s theorem, since if G has minimum degree at least n/2 then
for all non-adjacent u and v we have d(u)+d(v) ≥ n/2+n/2 ≥ n. It is known as Ore’s theorem,
and the argument of part (a) is the closure property and is very helpful in finding Hamilton
cycles in general.

Page 10 of ??


