
COMS20010 — Problem sheet 6

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 6, focusing on spanning trees, the union-find data structure and 2-3-4
trees.

1. (a) [⋆⋆] Consider the list of numbers 5, 2, 7, 9, 8, 11, 13, 4, 6, 14. Add these to a 2-3-4 tree in this order
and draw what the final tree looks like.

Solution:

2 4 6 7 9 13 14

5 8 11

If this solution is unclear, try drawing the tree after every insertion.

(b) [⋆⋆] Now remove the elements 2, 9, 4. What does the final tree look like?

Solution:

There are two possible solutions depending on which direction you choose to fuse siblings.
These are:

5 7 11 14

6 8 13

Page 1 of 7

or

5 6 8 13 14

7 11

If these solutions are unclear, try drawing the tree after every deletion.

(c) [⋆⋆] Consider the 2-3-4 tree

1 4 8 10 12

2 9 11

5

What does this tree look like after running Delete(4)?

Solution:

1 2 8 10 12

5 11

9

2. [⋆⋆] In database design, it is very common for each record to have a unique identifier, and for records to
be added and removed while the database is running. Explain how 2-3-4 trees could be used to support
a database.

Solution: We store the identifier of each record inside a 2-3-4 tree, alongside a pointer to the record
itself. If we have n records in total, this allows us to find, insert or delete a new record in O(log n)
time. We can also quickly iterate over all records in the database, or records whose IDs fall into a
specified range.

(Actually, databases tend to use “B-trees” instead. These are very similar to 2-3-4 trees, but instead
of each node having between 2 and 4 children, each node has between d and 2d children for some large
value of d. Search, insertion and deletion are then implemented in essentially the same way. This
makes the tree shallower, which improves the constant factors in the running speed since passing to
a new node in the tree often requires a slow disk or cache access.)

3. [⋆⋆] Prove, using the perfect balance property, that a 2-3-4 tree containing n values has depth Θ(log n).

Solution: Let T be a 2-3-4 tree with depth d, and let L0, . . . , Ld be the layers of T from top to
bottom. By perfect balance, each node in L0, . . . , Ld−1 has at least 2 children, so |Li| ≥ 2|Li−1| for
all 1 ≤ i ≤ d, and so T contains at least

∑d
i=0 2

i = 2d+1 − 1 nodes. Each node contains at least one
value, so

n ≥ 2d+1 − 1 ≥ 2d.

Page 2 of 7

Taking logarithms of both sides yields d ≤ log n and hence d ∈ O(log n). For the other direction,
observe that each node in L0, . . . , Ld−1 has at most 4 children, so T contains at most

d∑
i=0

4i =
4d+1 − 1

3
≤ 4d+1

nodes. Each node contains at most three values, so n ≤ 3 · 4d+1 ≤ 4d+2. Taking logarithms of both
sides yields 2(d+ 2) ≥ log n and hence d ∈ Ω(log n). Since d ∈ O(log n) and d ∈ Ω(log n), it follows
that d ∈ Θ(log n).

4. (a) [⋆⋆] Consider the list 8, 3, 16, 1, 6, 19, 2. Add each of these to a union-find data structure (i.e. run
MakeUnionFind). What does the data structure look like after running this operation?

Solution:

8 3 16 1 6 19 2

(b) [⋆⋆] Run Union(8,1), Union(19,16), Union(2,16), Union(1,3), Union(16,8). What does the
data structure look like after running these operations?

Solution:

8

1 3 19

16 2

6

Note that this solution is not unique since there are different ways of merging components -
for example Union(8,1) might put 8 under 1 rather than 1 under 8. Any valid solution will
have the same structure as above, but potentially with some labels swapped around. i.e. any
solutions will be unique up to isomorphism.

(c) [⋆⋆] What is the result of running FindSet(1), FindSet(2), FindSet(19)?

Solution: The solution here depends on the exact structure of the tree formed in part (b).
These answers correspond to the example shown above.

FindSet(1) = 8, FindSet(2) = 8, FindSet(19) = 8.

5. [⋆⋆⋆] Let G be an m-edge connected weighted graph, given in adjacency list form, whose edge weights
are all either 1 or 2. Adapt Kruskal’s algorithm into an O(mα(m))-time algorithm to find a minimum
spanning tree of G, where α is the inverse Ackermann function.

Solution: Recall that Kruskal’s algorithm first sorts the edges of G in O(m logm) time, and then
builds the minimum spanning tree using O(m) operations on a union-find data structure. In this
case, we can sort the edges of G by weight in O(m) time with counting sort (i.e. by making two
passes through the list of edges to extract first the weight-1 edges and then the weight-2 edges). The
union-find operations then take O(mα(m)) time using the optimised version of the data structure,
so we’re done.

Page 3 of 7

6. [⋆⋆] Let T be a 2-3-4 tree.

(a) Prove by induction that performing an in-order traversal of T will output the values of T in increasing
order. (For example, on encountering a 3-node with values 5 and 7, and children c0, c1 and c2 from
left to right, in-order traversal first recursively processes c0, then outputs 5, then processes c1, then
outputs 7, then processes c2.)

Solution: We proceed by induction on the depth of T . If T has depth 0, then in-order traversal
simply prints the values contained in T ’s root in sorted order, so we’re done. Suppose T has
depth d > 0, and the result holds for trees of depth at most d− 1. Let x1 < · · · < xk−1 be the
values stored in T ’s root, and let T1, . . . , Tk be the subtrees rooted in the first layer of T (from
left to right). Then by induction, in-order traversal will output the vertices of T1 in increasing
order, followed by x1, followed by the vertices of T2 in increasing order, followed by x2, and so
on. By the definition of a 2-3-4 tree, this is in increasing order as a whole, and we’re done.

(b) Prove that if v is a value stored in a non-leaf node N of T , then the predecessor of v is stored in a
leaf.

Solution: By (a), the predecessor of v is the previous value output by in-order traversal. Since
N is not a leaf, it has a child immediately to the left of v, and in-order traversal will have finished
processing this child immediately before outputting v. The only possible base case of in-order
traversal is a leaf, so it follows that v’s predecessor is a leaf.

7. [⋆⋆⋆] Let G be a connected weighted graph, and suppose that no two edges in G have the same weight.
Prove that G has a unique minimum spanning tree. (Hint: Look back at the correctness proof for
Kruskal’s algorithm.)

Solution: Suppose for a contradiction that G has at least two distinct minimum spanning trees.
Let S be an arbitrary minimum spanning tree, and let T be the output of Kruskal’s algorithm.
Recall that when we proved in lectures that the output of Kruskal’s algorithm was optimal, we did
it by constructed a sequence of spanning trees T0, . . . , Tk where:

(i) T0 = S and Tk = T ;

(ii) For all 0 ≤ i ≤ k, Ti+1 is formed from Ti by removing a single edge ei and adding a single edge
fi;

(iii) For all 0 ≤ i ≤ k, w(Ti+1) ≤ w(Ti).

Since S is minimum, no spanning tree can have weight less than S, so (iii) actually implies w(Ti+1) =
w(Ti). It follows from (ii) that w(ei) = w(fi), and in particular ei and fi are two edges with distinct
weights — which can’t happen! So we have our contradiction. Intuitively, what this argument shows
is that Kruskal’s algorithm can generate any possible spanning tree of the graph, depending on how
it breaks ties between equal-weight edges.

8. (a) [⋆⋆] Let T1 and T2 be 2-3-4 trees, containing n1 and n2 values respectively, where n1 ≤ n2 and
the depth of T1 is at most the depth of T2. Give an algorithm to merge them into a single tree in
O(n1 log(n2)) time. (You may assume all values in T1 and T2 are distinct from each other.)

Page 4 of 7

Solution: Iterate over T1 in any order, and use the insertion operation to add each element of
T1 to T2. Each insertion takes O(log(n1 + n2)) ⊆ O(log(2n2)) = O(log n2) time, and there are
n1 insertions in total, so the running time follows.

(b) [⋆⋆] Explain intuitively why we should expect that any algorithm to do this will require Ω(n1) time.

Solution: If the values of T1 and T2 are interleaved with each other, so that the nodes of T1

have to be scattered throughout T2, then we should expect to have to process each node of T1

individually, which must take Ω(n1) time.

(c) [⋆⋆⋆⋆⋆] Suppose now that we are given a single element x, that every value in T1 is strictly less
than x, and that every value in T2 is strictly greater than x. (This operation is called a join.) Give
an algorithm to merge T1, T2 and x into a single 2-3-4 tree in O(log n2) time. You do not need to
prove it works.

Solution: First find the leftmost node N of T2 such that the subtree rooted at v has depth
d. Split any 4-nodes encountered on the way down, exactly as in the insertion operation. This
takes O(log n2) time. Write:

� c1, . . . , ck for the children of the root of T1 from left to right;

� v1, . . . , vk−1 for the values of the root of T1 from left to right;

� d1, . . . , dℓ for the children of N from left to right;

� w1, . . . , wℓ−1 for the values N from left to right.

Now replace N by a node N ′ with values v1, . . . , vk−1, x, w1, . . . , wℓ−1 from left to right, and
children c1, . . . , ck, d1, . . . , dℓ from left to right; thus N ′ has k+ ℓ children and k+ ℓ− 1 values,
and all descendants of the ith child are between the i − 1st and the ith value. (This follows
because T1 and T2 are 2-3-4 trees where every value in T1 is less than x, which in turn is less
than every value in T2.) If k+ ℓ−1 = 3, then N ′ is a valid 4-node and we are done. Otherwise,
we at least have k + ℓ − 1 ≤ 4 + 4 − 1 = 7, so we can split N the same way we would in a
standard insertion operation:

� Let x be the ⌊(k + ℓ)/2⌋’th value in N ′, i.e. a value as close as possible to the middle of
the node.

� Move x upwards to N ′’s parent, or to form a new 2-node if N ′ is the root.

� Split N ′ into two nodes, one of which becomes the left child of x and contains all values
to the left of x, and the other of which becomes the right child of x and contains all values
to the right of x.

Since we removed a value from the middle of the node and split the remaining values into two
nodes of roughly equal size, each new nodes will have at most ⌈(k + ℓ − 2)/2⌉ ≤ 3 values, so
the result is a valid 2-3-4 tree. An example is shown below.

Page 5 of 7

7 9 11 13 15

8 10 14+ 6 +

1 3 5

2 4

12

13 151 3 5 7 9 11

142 4 6 8 10

12

13 151 3 5 7 9 11

142 4 8 10

6 12

(d) [⋆⋆⋆] Now give an algorithm to merge only T1 and T2 into a single 2-3-4 tree in O(log n2) time.
(Hint: Try reducing to part (c).)

Solution: Create a dummy element x whose weight is between the rightmost element of T1

and the leftmost element of T2; this will take O(log n2) time. Apply the join operation of
part (c) to join T1, T2 and x in O(log n2) time. Finally, delete x from the resulting tree in
O(log(n1 + n2 + 1)) = O(log n2) time.

9. [⋆⋆⋆⋆] You are given an n× n bitmap image, and you wish to divide the pixels into contiguous regions
of similar colours. (This is a common problem in computer vision.) We model this by a grid graph G
with vertex set [n]× [n]. We say a grid square (i, j) is adjacent to the grid square to its left, right, top
or bottom if their corresponding pixels have similar RGB values. Suppose your computer has C ∈ O(n)
cores working in parallel, all of which have read and write access to a common union-find data structure
initialised with all points in [n]× [n]. Sketch an algorithm to find the components of G in O(n2α(n2)/C)
time.

Solution: Assume for simplicity that n is divisible by C. Divide the vertices of G into equal
horizontal bands B1, . . . , BC , where Bi = [n]×{(i− 1)n/C +1, (i− 1)n/C +2, . . . , in/C}. The i’th
core should scan through Bi in raster order, i.e. line-by-line from left to right and top to bottom.

Page 6 of 7

When it encounters a vertex (a, b), it should check whether it is adjacent to the vertex (a− 1, b) to
its left in G; if so, it should merge the set containing (a, b) and the set containing (a−1, b). Likewise,
if it is adjacent to the vertex (a, b+1) above it, it should merge the set containing (a, b) and the set
containing (a + 1, b). This takes the core O(n2α(n2)/C) time. We claim that when every core has
finished, the sets in the union-find data structure will be precisely the components of G, so we’re
done. Indeed, a union operation will have been carried out along every edge of the graph at some
point in the algorithm’s operation, so its two endpoints must lie in the same set. Thus the endpoints
of any path must lie in the same set, and so any two vertices in the same component of G must lie
in the same set. Conversely, if two vertices lie in the same set, there must be some path of edges
joining them and so they must lie in the same component. This is a slightly simplified version of
the Hoshen-Kopelman algorithm.

Page 7 of 7

