
COMS20010 — Problem sheet 7

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 7, focusing on linear programming and network flows.

1. (a) [⋆⋆] Convert the following linear programming problem into standard form.

4x− 3y + z → min subject to

x+ y ≤ 4,

3x− 2y − z ≥ 2,

x, y ≥ 0.

Solution: Using the method described in lectures, we obtain

−4x+ 3y − z1 + z2 → max subject to

(
1 1 0 0
−3 2 1 −1

)
x
y
z1
z2

 ≤
(

4
−2

)
,

x, y, z1, z2 ≥ 0.
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(b) [⋆⋆⋆] Some linear programming algorithms prefer to take their input in another form, known as
slack form. In slack form, we are given a linear objective function f : Rn → R, an m × n matrix
A, and an m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f(x⃗)

subject to Ax⃗ = b⃗ and x⃗ ≥ 0; thus slack form is the same as standard form, except that the upper
bound constraint Ax⃗ ≤ b⃗ is replaced by the equality constraint Ax⃗ = b⃗.

Put the linear programming problem from part (a) into slack form, and explain how to apply your
method to convert any problem in standard form into slack form. (Hint: You may find it useful to
add new variables.)

Solution: In general, to turn a problem in standard form into slack form, we add one new
slack variable to each constraint — say the i’th constraint gets variable si. We then change
the constraint from

∑
j Ai,jxj ≤ bi to

∑
j Ai,jxj + si = bi, and add non-negativity constraints

si ≥ 0. Then for each value of x⃗ with
∑

j Ai,jxj ≤ bi, there is a unique value of si with∑
j Ai,jxj+si = bi; conversely, since si ≥ 0, if

∑
j Ai,jxj+si = bi then we also have

∑
j Ai,jxj ≤

bi. Thus the two problems are equivalent. For the specific problem above, the slack form is

−4x+ 3y − z1 + z2 → max subject to

(
1 1 0 0 1 0
−3 2 1 −1 0 1

)


x
y
z1
z2
s1
s2

 =

(
4
−2

)
,

x, y, z1, z2, s1, s2 ≥ 0.

2. Are the following statements true or false? For each one, give either a short explanation (if it’s true) or
a counterexample (if it’s false).

(a) [⋆⋆] If f is a maximum flow in a flow network (G, c, s, t), then f(e) = c(e) for all edges e incident
to the source s.

Solution: This is false — here’s a counterexample, shown with its maximum flow:

s t
1/2 1/1

(b) [⋆⋆⋆] If (A,B) is a minimum cut in a flow network (G, c, s, t), and we add 1 to the capacity of every
edge, then (A,B) is still a minimum cut.

Solution: This is false — here’s a counterexample, shown a minimum cut of the original
network:

s t
4

1

1

1

1

1

1
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But in the network with increased capacities, this cut has value 6 and there is a cut with value 5:

s t
5

2

2

2

2

2

2

3. Consider the following flow network with capacities indicated:

s t

7

4

5

20

5

4

9 5

4

3

11

13

2

1

(a) [⋆⋆] Run the Ford-Fulkerson algorithm on this flow network to find a maximum flow, showing how
the residual network evolves as the current flow changes.

Solution:

s t

7/7

4/4

3/
5

7/20

4/5

0/
4

3/5 1/5

2/4

0/
3

11/11

11
/1
3

2/2

1/1

This is a maximum flow with v(f) = 14.

(b) [⋆⋆] Now consider the following flow network with a flow.
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s t

0/1

1/
1

0/1

1/1

0/1

1/
1

0/1

Continue running the Ford-Fulkerson algorithm on this flow network to find a maximum flow,
showing how the residual network evolves as the current flow changes.

Hint: How are reverse edges useful here?

Solution: A maximum flow for this network looks like

s t

1/1

1/
1

1/1
0/1

1/1

1/
1

1/1

with v(f) = 2.

4. [⋆⋆⋆⋆] John thinks backward edges sound unnecessarily complicated, and so he decides to implement
the Ford-Fulkerson algorithm using only forward edges. (In other words, his algorithm only chooses
augmenting paths that increase flow along every edge, and terminates when no such paths exist.) He
reasons that while it won’t always give a maximum flow, it will at least give a decent approximation.
Show that John is wrong by giving an example on which his algorithm may output a flow whose value is
at most one hundredth of that of a maximum flow. You may make whatever assumptions you like about
how John’s algorithm chooses its augmenting paths. (Hint: Your example may have too many vertices
to draw in full.)

Solution: The following example works, where s is the source and t is the sink.
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

s

u1

u2

u3

u100

v1

v2

v3

v100

t

John’s algorithm may take its first augmenting path to be su100v100u99v99u98v98 . . . u2v2u1v1t.
John’s algorithm will then push flow down that path, resulting in a value-1 flow in which there
are no more augmenting paths containing only forward edges. John’s algorithm will then output
that flow. However, the flow pictured below has value 100:

1/
1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/
1

0/1

0/1

0/1

0/1

s

u1

u2

u3

u100

v1

v2

v3

v100

t

so the output’s value is at most one hundredth that of a maximum flow, as required.

5. (a) [⋆⋆⋆] Prove that the approximation algorithm for vertex cover given in lectures works, outputting
a vertex cover with weight at most twice the minimum possible.

Solution: This is the same as the solution to part b), but with the weights set to 1.

(b) [⋆⋆⋆] In the weighted vertex cover problem, we are given a graph G = (V,E) and a weight function
w : V → N, and we must output a vertex cover with minimum total weight. Adapt the unweighted
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algorithm given in lectures to solve this problem approximately, and prove it works.

Solution: We form the linear program relaxation as follows:∑
v∈V

w(v)xv → min subject to

xu + xv ≥ 1 for all {u, v} ∈ E,

xv ≤ 1 for all v ∈ V,

xv ≥ 0 for all v ∈ V.

Exactly as in the unweighted problem, integer solutions correspond to vertex covers (taking v
to be in the cover if and only if xv = 1), and an optimal integer solution would correspond to
a minimum-weight vertex cover. Again as in the unweighted case, we solve this linear program
with an algorithm of our choice, round each xv to the nearest integer, and output the resulting
vertex set. Let X be the set we output, let {x′

v : v ∈ V } be the result of rounding our linear
program solution, let w(X) =

∑
v∈X w(v), and let w∗ be the minimum possible weight of a

vertex cover. We must show that X is a vertex cover with w∗ ≤ w(X) ≤ 2w∗.

Y is a vertex cover: For every edge {u, v} ∈ E, we have xu+xv ≥ 1, so at least one of xu or
yu must be at least 1/2. Suppose (without loss of generality) it is xu. Then x′

u = 1, so u ∈ X.
We have shown that X contains at least one endpoint of every edge in G, as required. ✓

w(X) ≥ w∗: This follows since Y is a vertex cover and every vertex cover has weight at least
w∗. ✓

w(X) ≤ 2w∗: Recall that w(X) =
∑

v∈X w(v). Since v ∈ X if and only if xv ≥ 1/2, it follows
that

w(X) =
∑
v∈V

xv≥1/2

w(v) =
∑
v∈V

xv≥1/2

w(v)xv ·
1

xv
≤ 2

∑
v∈V

xv≥1/2

w(v)xv ≤ 2
∑
v∈V

w(v)xv.

Since any vertex cover is an (integer) solution of the linear program, and xv is the optimal
(real) solution, it follows that w(X) ≤ 2w∗. ✓

This is a significant benefit of LP relaxation as a technique — if you can use it to approximately
solve the unweighted version of a problem, you can often solve the weighted version with
essentially the same algorithm.

6. Consider the folowing linear programming problem:

7x+ 8y → max subject to

−0.5x+ 2 ≤ y

x− 15 ≤ y

−0.2x+ 25 ≥ y

0.8x+ 16 ≥ y

x, y ≥ 0

(a) [⋆⋆] Convert this problem into standard form.
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Solution:

7x+ 8y → max subject to
−0.5 −1
1 −1
0.2 1
0.8 −1

[
x
y

]
≤


−2
15
25
16


x, y ≥ 0

(b) [⋆⋆] Plot these constraints. What do they look like geometrically?

Solution:

x

y

154

2

16

(9,23.2)

(33.33,18.33)

(c) [⋆⋆] Evaluate the objective function at each vertex to determine the optimal values of x and y for
this problem.

Solution:

(4, 0) → 7x+ 8y = 28

(15, 0) → 7x+ 8y = 105

(33.33, 18.33) → 7x+ 8y = 380

(9, 23.2) → 7x+ 8y = 248.6

(0, 16) → 7x+ 8y = 128

(0, 2) → 7x+ 8y = 16

It follows that the optimum is at (33.33, 18.33).

7. (a) [⋆⋆] Consider the following linear programming problem:

3(x1 + x2 + x3 + x4 + x5 + x6) → max subject to

5x1 + 4x2 + 2x3 + x4 ≤ 10,

x3 + 2x4 + 4x5 + 5x6 ≤ 25,

x1, . . . , x6 ≥ 0.

By subtracting the left-hand sides of both constraints from the objective function, prove that the
optimal solution has value at most 35.
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Solution: If x1, . . . , x6 satisfy the given constraints, we have

3

6∑
i=1

xi ≤ 3

6∑
i=1

xi − (5x1 + 4x2 + 2x3 + x4) + 10− (x3 + 2x4 + 4x5 + 5x6) + 25

= −2x1 − x2 − x5 − 2x6 + 35 ≤ 35.

(b) [⋆⋆⋆] Instead of subtracting the left-hand sides of both constraints once each, we could have sub-
tracted a constant multiple a1 of 5x1+4x2+2x3+x4 and a constant multiple a2 of x3+2x4+4x5+5x6

and then kept the rest of the argument the same, yielding a different and potentially better upper
bound. Formulate the problem of trying to find the best possible upper bound with this method as
a two-variable linear program in a1 and a2.

Solution: For any choice of a1, a2 ≥ 0, we have

3
6∑

i=1

xi ≤ 3

6∑
i=1

xi − a1(5x1 + 4x2 + 2x3 + x4 − 10)− a2(x3 + 2x4 + 4x5 + 5x6 − 25)

= (3− 5a1)x1 + (3− 4a1)x2 + (3− 2a1 − a2)x3 + (3− a1 − 2a2)x4

+ (3− 4a2)x5 + (3− 5a2)x6 + (10a1 + 25a2).

Since x1, . . . , x6 ≥ 0, we can conclude 3
∑6

i=1 xi ≤ 10a1+25a2 if each variable xi has a negative
coefficient. Thus to find the best possible upper bound, we must solve the linear program

10a1 + 25a2 → min subject to

3− 5a1 ≤ 0,

3− 4a1 ≤ 0,

3− 2a1 − a2 ≤ 0,

3− a1 − 2a2 ≤ 0,

3− 4a2 ≤ 0,

3− 5a2 ≤ 0,

a1, a2 ≥ 0.

(c) [⋆⋆] Solve this new linear program (e.g. using the fact that the solution must be at a corner of the
feasible polytope) to prove that the original problem’s optimal solution has value at most 33.75.

Solution: Note that all constraints except the third and fourth are satisfied if and only if
a1, a2 ≥ 3/4. The third constraint is equivalent to a2 ≥ 3 − 2a1, and the fourth constraint is
equivalent to a2 ≥ (3− a1)/2. The feasible polytope therefore looks like this:
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a1

a2

( 34 ,
3
2 )

(1, 1)

( 32 ,
3
4 )

Plugging in ( 34 ,
3
2 ), (1, 1) and ( 32 ,

3
4 ) into our objective function 10a1 + 25a2, we see that it is

minimised when a1 = 3
2 and a2 = 3

4 , giving a value of 33.75.

(d) [⋆⋆⋆⋆] Generalise this method to give an upper bound for an arbitrary linear programming problem
in standard form. (In fact, this “upper bound” will always be equal to the optimal value — the new
linear programming problem formed is called the “dual” of the original “primal” problem. This is
a key ingredient in almost every algorithm for solving linear programming problems.)

Solution: Consider an arbitrary linear programming problem in standard form:

c⃗ · x⃗ → max subject to

Ax⃗ ≤ b⃗,

x⃗ ≥ 0⃗.

If A is an m× n matrix, say, then for all a1, . . . , am ≥ 0, we have

c⃗ · x⃗ ≤ c⃗ · x⃗−
m∑
i=1

ai(Ax⃗)i +

m∑
i=1

aibi

=

n∑
j=1

(
cj −

m∑
i=1

aiAi,j

)
xj + a⃗ · b⃗

=

n∑
j=1

(cj − (AT a⃗)j)xj + a⃗ · b⃗

≤ a⃗ · b⃗ if AT a⃗ ≥ c⃗.

Thus to find the optimum upper bound, we must solve the linear programming problem in a⃗:

b⃗ · a⃗ → min subject to

A⃗T a⃗ ≥ c⃗,

a⃗ ≥ 0⃗.

8. (a) [⋆⋆⋆] You are working in the upper echelons of MI6 during the Cold War. The organisation’s spies
in Russia communicate via dead drops, parcels left in predetermined locations on a predetermined
schedule. For security reasons, each pair of nearby spies has their own dedicated dead drop which
no-one knows about but them. SPECTRE is trying to find out where these dead drops are, so they
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can intercept the parcels. M is concerned that if SPECTRE finds enough dead drops, they may be
able to completely disconnect her spy network, so that at least one pair of spies is completely unable
to get in contact with each other even via intermediaries. Give a polynomial-time algorithm which
takes as input a list of pairs of spies with dead drops between them and outputs the minimum k
such that SPECTRE can disconnect the spy network by compromising k dead drops. (Hint: Try
reducing the problem to finding minimum cuts in suitably-constructed flow networks.)

Solution: The algorithm is as follows. First construct a graph G whose vertex set is the set
of all spies, where spies a and b are joined by an edge if they can communicate via dead drop.
Let c : E(G) → N be the function mapping every edge in G to 1. For each pair s, t of distinct
spies, construct the graph Gs,t formed from G by directing every edge between s and N(s)
towards N(s), and directing every edge between t and N(t) towards t. Then use the Edmonds-
Karp algorithm to find the value vs,t of a maximum flow in the network (Gs,t, c, s, t). Finally,
calculate and output min{vs,t : s, t ∈ V, s ̸= t}.
It is easy to see that the algorithm runs in polynomial time; it remains to prove that it outputs
the correct answer, i.e. the smallest possible size of a set F ⊆ E(G) such that G − F is
disconnected with s and t in different components. We call such a set an st-edge separator,
and claim that the size of a smallest possible edge separator Fmin is equal to the capacity of a
minimum cut (Xmin, Ymin) in (Gs,t, c, s, t).

|Fmin| ≥ c+(Xmin): Let X be the set of vertices reachable from s in G− F . We have s ∈ X
by construction, and since F is a separator we must have t /∈ X, so (X,V \X) is a cut. Every
edge from X to V \X must be included in F , so we have c+(Xmin) ≤ c+(X) ≤ |Fmin|. ✓

|Fmin| ≥ c+(Xmin): Let F be the set of edges between Xmin and Ymin; thus |F | = c+(Xmin).
Then since s ∈ Xmin and t ∈ Ymin, removing F from G must disconnect s from t. Thus
|Fmin| ≤ |F | = c+(Xmin). ✓

Thus the minimum size of an st-edge separator is precisely the capacity of a minimum cut
in (Gs,t, c, s, t), which by the max-flow min-cut theorem is precisely vs,t. Our algorithm is
therefore correct.

(b) [⋆⋆⋆⋆] James Bundt suggests another measure of the spy network’s robustness: the minimum C
such that every pair of spies is joined by C “paths” of dead drops, with no dead drop appearing
in more than one path. Show that these two measures coincide, in the sense that C = k in every
possible spy network. (Hint: Try greedily building these paths from the maximum flows of part
(a).)

Solution: Let Cs,t be the maximum size of a collection of edge-disjoint paths between s and t
in G; then we have C = min{Cs,t : s, t ∈ V (G), s ̸= t}. We claim that Cs,t is equal to vs,t, i.e.
the value of a maximum flow from s to t in the network (Gs,t, c, s, t).

Let f be a maximum flow in this network; as proved in lectures, we may assume that it is integer-
valued, so that f(e) ∈ {0, 1} for all e ∈ E(Gs,t). Let X be the set of all vertices reachable from
s along edges with flow 1. Then all edges from S to V (G) \ S have flow 0, so if t /∈ S then
(S, V (G) \ S) is a cut with f+(S) − f−(S) ≤ f+(S) = 0; since f+(S) − f−(S) = v(f) > 0
(as shown in lectures), this cannot happen. Thus there is a path P1 from s to t using only
edges with flow 1. Reduce flow along those edges by 1, reducing v(f) by 1, and repeat the
process v(f) times to obtain v(f) paths from s to t. These paths are clearly edge-disjoint, and
f remains a flow throughout the process since we reduce both f+(u) and f−(u) by the same
amount for all u ∈ V (G) \ {s, t}. Thus Cs,t = vs,t as claimed.

It now follows from the previous part of the question that

C = min{Cs,t : s, t ∈ V (G), s ̸= t} = min{vs,t : s, t ∈ V (G)} = k,

as required.
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