
COMS20010 — Problem sheet 8

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. At most 10% of marks in the exam will be
from questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 9, focusing on network flows and NP-hardness.

1. [⋆⋆] In lectures, we showed how to use edge capacities to simulate vertex capacities in flow networks.
Explain how to do this the other way round, using vertex capacities to simulate edge capacities. In other
words, given a flow network (G, cE , s, t) with source s, sink t and edge capacity function cE , explain how
to construct a network (G′, cV , s

′, t′) with a vertex capacity function cV such that flows in (G, cE , s, t)
correspond to flows in (G′, cV , s

′, t′) of the same value, and vice versa.

Solution: To simulate vertex capacities using edge capacities in lectures, we introduced a vertex
gadget; here, to simulate edge capacities using vertex capacities, we will use an edge gadget. Let
(G, cE , s, t) be as in the question, and form (G′, cV , s

′, t′) from (G, cE , s, t) as follows:

� For each edge e = (u, v) in G, add a new vertex xe and replace (u, v) by the pair of edges
(u, xe) and (xe, v). (This operation is known as subdividing e.)

� Assign each new vertex xe capacity c(e), and assign each vertex in V (G) \ {s, t} capacity∑
e∈E(G) c(e).

� Take s′ = s and t′ = t.

Flows in (G, cE , s, t) correspond bijectively to equal-valued flows in (G′, cV , s
′, t′); if f is a flow in

(G, cE , s, t), then for all edges e = (u, v) ∈ E(G), the corresponding flow fV in (G′, cV , s
′, t′) maps

both (u, xe) and (xe, v) to f(e). To see that fV a flow if and only if f is, we note that:

Page 1 of 11

� The flow fV is conserved at all vertices xe by construction;

� The flow fV is conserved at a vertex v ∈ V (G) if and only if it is conserved at v in f ;

� The flow fV obeys vertex capacity constraints at all vertices in V (G) by construction;

� The flow fV obeys the capacity constraint at a vertex xe if and only if f obeys the capacity
constraint at the edge e.

fV and f have the same values, so the construction is valid. An example is shown below.

5/5

6/6

2/22/3

5/6

7/10

1/
8

4/4

7/7

s t

5

5

6

6

2

2 2

2

5 5

1

1

7 7

4

4

7

7

s

51

51

51

51

t

5

6

3 2

6

8

10

4

7

2. (a) [⋆⋆] Turn this (bipartite) matching problem into a flow network problem using the reduction de-
scribed in lectures.

Solution: All we do here is add a new source and target vertex, and then make all the edges
directed with capacity 1.

Page 2 of 11

s t

0/1

0/1

0/1

0/
1

0/1

0/
1

0/
1

0/
1

0/1

0/1

0/1

Note that there are a couple of edges drawn here without a 0/1 label. This is just because they
don’t fit on the image, but should be there.

(b) [⋆⋆] Use Ford-Fulkerson to calculate a maximum flow for your flow network from part (a).

Solution: A maximum flow here is

s t

1/1

1/1

1/1

1/
1

1/1

0/
1

1/
1

1/
1

1/1

1/1

1/1

(c) [⋆⋆] How does this maximum flow give you a maximum matching for the earlier bipartite graph?

Solution: We can take the edges which are part of the maximum flow and also part of our
bipartite graph to extract a maximum matching.

(d) [⋆⋆⋆] Using the max-flow min-cut theorem, prove that if G is a bipartite graph with bipartition

Page 3 of 11

(A,B), and |A| = |B|, then G contains a perfect matching if and only if and for all X ⊆ A we
have |N(X)| ≥ |X|. (Hint: Remember the reduction given in lectures from finding a maximum
matching to finding a maximum flow.)

Solution: If G contains a perfect matching, then each set X ⊆ A is matched to at |X| distinct
vertices, so |N(X)| ≥ |X|. Conversely, suppose |N(X)| ≥ |X| for all X ⊆ A; then we must
show that G contains a perfect matching.

In lectures, we turned G into a flow network by:

� adding a source vertex s and a sink vertex t;

� directing all edges from A to B;

� adding all possible edges from s to A;

� adding all possible edges from B to t;

� and giving every edge capacity 1.

Let (X,Y) be a cut in this network, so that s ∈ X and t ∈ Y . Then the capacity of (X,Y)
is given by the number of edges leaving X from s plus the number of edges leaving X from A
plus the number of edges leaving X from B, so

c+(X) = |A \X|+ |E(A ∩X,B \X)|+ |B ∩X|
≥ |A \X|+ |NG(A ∩X)| − |B ∩X|+ |B ∩X|.

By hypothesis we have |NG(A∩X)| ≥ |A∩X|, so it follows that c+(X) ≥ |A|. By the max-flow
min-cut theorem, it follows that there is a flow with value at least |A|. By the result proved at
the end of lecture 23, it follows there is an integer-valued flow with value at least |A|, which
corresponds to a matching with at least |A| edges as shown in lecture 24. Since |A| = |B|, this
must be a perfect matching as required.

3. (a) [⋆⋆] Reduce this circulation problem to a maximum flow problem using the reduction in lectures.

-10

-1

4

5

3

-2

9

10

4

2

7

5

38

Solution: First, we observe that S = {sources} = {a, b, f} and T = {sinks} = {c, d, e}. Next,
we construct new vertices s, t and connect s to each of our sources, and t to each of our sinks.
Finally, we give each edge (s, v) and (v, t) a capacity of D(v). This gives us the following flow
network:

Page 4 of 11

s t

0/10

0/1

0/2

0/3

0/5

0/4

0/9

0/10

0/4

0/2

0/7

0/5

0/30/8

(b) [⋆⋆] Use Ford-Fulkerson to find a maximum flow in your reduction problem.

Solution: A maximum flow here looks like

s t

10/10

1/1

1/2

3/3

5/5

4/4

2/9

5/10

3/4

0/2

4/7

0/5

0/31/8

(c) [⋆⋆] Explain how this shows us there is no valid circulation in this network.

Solution: We see that this network has one more unit coming from a source than going out
of a sink. I.e. there are 13 units of flow that could come from a source, and 12 units of flow
that could go out of a sink. It follows that it is not possible for this flow, or any other flow, to
maximise both sources and sinks due to this mismatch.

4. [⋆⋆] In lectures, we said that every propositional logic formula (such as ¬x ∧ ¬((y ∨ z) ∧ ¬z)) can be
expressed in conjunctive normal form. In other words, for any formula F , there is a CNF formula F ′ on
the same variables which evaluates to True if and only if F does. Give an exponential-time algorithm
to find such a formula. (Hint: Try enumerating the assignments on which F is false.)

Solution: Let F be the input formula. Let x1, . . . , xn be the variables of F , and let a1, . . . , at : {x1, . . . , xn} →
{True, False} be a list of all assignments of values to those variables under which F is False. (We
can find a1, . . . , at in O(|F | · 2n) time by brute-force checking.) Each assignment ai corresponds to
an AND clause Ci of n literals; for example, the assignment x → True, y → False and z → True

Page 5 of 11

corresponds to x∧¬y∧z. The AND clause Ci evaluates to True if and only if the values of x1, . . . , xn
are chosen as in ai. We therefore have

F = ¬(C1 ∨ C2 ∨ · · · ∨ Ct).

In other words, F is True if and only if x1, . . . , xn aren’t set according to any of the assignments
a1, . . . , at.

We now apply De Morgan’s laws to turn F into CNF form. First observe that

F = ¬C1 ∧ ¬C2 ∧ . . .¬Ct.

Moreover, write Ci = ℓ1 ∧ ℓ2 ∧ . . . ℓn, where each ℓi is a literal. Write C ′
i = ¬ℓ1 ∨ ¬ℓ2 ∨ · · · ∨ ¬ℓn;

then again by De Morgan’s laws, ¬Ci = C ′
i. Thus

F = C ′
1 ∧ C ′

2 ∧ · · · ∧ C ′
t.

Each C ′
i is an OR clause, so this is in conjunctive normal form. Our algorithm therefore simply

enumerates a1, . . . , at, calculates C
′
1, . . . , C

′
t, and outputs the above formula.

5. [⋆⋆⋆] In lectures, we said that search problems are often exactly as hard as their equivalent decision
problems. This question gives two examples.

(a) Give a Cook reduction from the problem of finding a satisfying assignment in a CNF to SAT,
which asks whether a satisfying assignment exists. (Hint: Try coming up with an exponential-time
recursive algorithm, then using the oracle to speed it up.)

Solution: Suppose we are given a polynomial-time oracle for SAT — let’s call it DecideSAT.
Let F be a given CNF formula, with variables v1, . . . , vn. Let F+ be the CNF formula that
results from setting v1 to True, i.e. removing every clause containing an un-negated copy of v1
and removing every negated copy of v1 from F . For example, if

F = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x4),

then
F+ = x4.

Likewise, let F− be the CNF formula that results from setting v1 to False. If F is satisfiable,
then either F+ or F− must be satisfiable, so we can proceed as follows. If F is empty, we return
the empty assignment. If DecideSAT(F+) = True, then we set x1 to true and recursively find a
satisfying assignment to F+. Otherwise, if DecideSAT(F−) = True, then we set x1 to false and
recursively find a satisfying assignment to F−. Otherwise, we return that F is unsatisfiable.
This requires at most 2n invocations of DecideSAT, so it takes polynomial time.

(b) Give a Cook reduction from the problem of finding a maximum matching in a graph to the decision
problem which asks: given a graph G and an integer k, does G contain a matching of size at least
k? (Note that the graph need not be bipartite.)

Solution: As in the previous question, we can write a polynomial-time subroutine FindMaxSize(G)
to find the size of a maximum matching in G by calling our oracle |V (G)| times. Using this,
we set out our recursive algorithm FindMatching(G) as follows:

� If G has no edges, return the empty set.

Page 6 of 11

� Choose an arbitrary edge e ∈ E(G), and let u and v be e’s endpoints.

� If FindMaxSize(G− e) = FindMaxSize(G), then return FindMatching(G− e).

� Otherwise, return {e} ∪ FindMatching(G− u− v).

This algorithm runs in O(|V (G)|2) time, with the bottleneck being the calls to FindMinSize.

As in the previous question, the algorithm works because of a self-reducibility argument. How-
ever we choose e, a set of edges M is a matching in G if and only if either e /∈ M and M is a
matching in G−e, or e ∈M and M −e is a matching in G−u−v. So FindMatching(G−e) re-
turns a matching as large as possible subject to not containing e, {e}∪FindMatching(G−u−v)
returns a matching as large as possible subject to containing e. So the algorithm uses the oracle
to check whether there’s a maximum matching not containing e; if so, it returns that one, and
if not, it returns a maximum matching which does contain e.

Note that since there is a polynomial-time algorithm for finding a maximum matching on an
arbitrary graph, it would also be technically correct to just use that as your Cook reduction
(without calling the oracle at all). As all theorists know, technically correct is the best kind of
correct.

6. (a) [⋆⋆] Solve the recurrence

a0 = 1,

a1 = ψ :=

√
5− 1

2
,

an+2 = an − an+1 for all n ≥ 0.

Hint: in COMS10007 last year we saw that for recurrences of this form, solutions of the form Axn

are often a good starting point.

Solution: Guessing a solution of the form Axn, as covered in COMS10007 last year, we see
that Axn+2 = Axn −Axn+1 and hence x2 = x = 1− x. It follows that

x =
−1±

√
5

2
.

Thus the solution must be of the form an = Aψn+B(−ϕ)n, where ϕ = (1+
√
5)/2. Substituting

in the known values for a0 and a1, we see that

1 = Aϕ0 +Aψ0 = A+B,

ψ = Aϕ1 +Bψ1 = Aϕ+Bψ.

Solving these equations simultaneously for A and B yields A = 1 and B = 0, so an = ψn for
all n.

(b) [⋆⋆⋆] Consider the following flow network and the pictured flow, where the unspecified flows (on the
edges incident to s and t) are arbitrary but substantially below the capacity.

Page 7 of 11

s

v1

v2

v3

v4

t

100
0

1000

1000

(1− an+1)/1

ψ/ψ

(1− an)/1

1000

1000

100
0

Find a sequence of four augmenting paths such that, if flow is pushed along each path in sequence,
then the flow on e1 will become 1−an+3, the flow on e2 will stay ψ, and the flow on e3 will become
1− an+2.

Solution: The four paths are P1 = P3 = sv1v2v3v4t, P2 = sv3v2v1t, and P4 = sv4v3v2t. Note
that since an = ϕn and ϕ < 1, we have a0 > a1 > a2 > The residual capacity of P1 is
therefore min{an+1, ψ, an} = an+1. After pushing flow along P1:

� The flow along (v1, v2) is 1 out of 1.

� The flow along (v3, v2) is (ψ − an+1) out of ψ.

� The flow along (v3, v4) is (1− an + an+1) out of 1 = (1− an+2) out of 1.

The residual capacity of P2 is therefore min{1, an+1} = an+1, and after pushing flow along P2:

� The flow along (v1, v2) is 1− an+1 out of 1.

� The flow along (v3, v2) is ψ out of ψ.

� The flow along (v3, v4) is (1− an+2) out of 1.

The residual capacity of P3 is therefore min{an+1, ψ, an+2} = an+2, and after pushing flow
along P3:

� The flow along (v1, v2) is (1− an+1 + an+2) out of 1 = (1− an+3) out of 1.

� The flow along (v3, v2) is (ψ − an+2) out of ψ.

� The flow along (v3, v4) is 1 out of 1.

The residual capacity of P4 is therefore min{1, an+2} = an+2, and after pushing flow along P4:

� The flow along (v1, v2) is (1− an+3) out of 1.

� The flow along (v3, v2) is ψ out of ψ.

� The flow along (v3, v4) is (1− an+2) out of 1.

This is the desired flow, so we’re done.

Page 8 of 11

(c) [⋆⋆⋆] Using the previous two parts, prove that the Ford-Fulkerson algorithm need not terminate
when edge weights are irrational, and moreover that terminating it early may yield an answer which
is very far from optimal.

Solution: Starting from an empty flow on the above network, the Ford-Fulkerson algorithm
could choose augmenting paths sv1v2t (setting the flow along (v1, v2) to 1 out of 1), then sv3v2v1t
(setting the flow along (v3, v2) to ψ out of ψ and the flow along (v1, v2) to 1−ψ = 1−a1 out of
1). Since the flow along (v3, v4) will be 0 = 1−a0 out of 1, this will be exactly the flow pictured
above for n = 0. The Ford-Fulkerson algorithm could then repeatedly choose the sequence of
augmenting paths P1, P2, P3, P4, without ever terminating, and without the value of the flow
ever exceeding 1 + ψ + 1. It is easy to see that the maximum flow has value at least 2000, so
this is very far from optimal.

(d) [⋆⋆⋆] What would go wrong with the above argument if the capacity of (v3, v2) were anything other
than ψ?

Solution: If the capacity x of (v3, v2) were not equal to ψ, then we would need to take a1 = x
rather than a1 = ψ. This would change the boundary conditions of the recurrence from the
first part, and in particular would result in B ̸= 0. Since ϕ > 1, we have ϕn ∈ ω(ψn), and so
for sufficiently large odd n the term B(−ϕ)n would dominate and we would have an < 0. This
would break the augmenting paths described in the second part.

7. Given literals x1, . . . , xk with k ≥ 2, a not-all-equal or NAE clause NAE(x1, . . . , xk) evaluates to true
if and only if the values of x1, . . . , xk are not all equal, i.e. at least one xi is true and at least one xi is
false. The NAE-SAT problem asks, given a formula of the form

NAE(x1,1, . . . , x1,k1
) ∧NAE(x2,1, . . . , x2,k2

) ∧ · · · ∧NAE(xℓ,1, . . . , xℓ,kℓ
),

whether it is satisfiable — that is, whether there is any assignment of truth values to variables which
makes the formula true. In other words, it is like SAT, except that we have NAE clauses instead of
AND clauses. (Note we allow literals to appear multiple times in the formula, so we may have e.g.
x1,1 = x1,2 = x2,1.)

(a) [⋆⋆⋆⋆] 3-NAE-SAT is the version of NAE-SAT in which ki = 3 for all i ∈ [ℓ]. Give a Cook reduction
from NAE-SAT to 3-NAE-SAT.

Solution: Let NAE(xi,1, . . . , xi,ki
) be a NAE clause. Then in polynomial time, we will replace

it with a polynomial-sized AND of 3-NAE clauses in xi,1, . . . , xi,ki
and a collection of new

variables which, for given values of xi,1, . . . , xi,ki
, is satisfiable if and only if xi,1, . . . , xi,ki

are
not all equal. Given this construction, we can turn a polynomial-time algorithm for 3-NAE-SAT
into a polynomial-time algorithm for NAE-SAT by applying this construction to each clause in
the input, running our 3-NAE-SAT algorithm, and returning the answer.

If ki = 2, then our construction is simple: NAE(xi,1, xi,2) = NAE(xi,1, xi,2, xi,2). If ki = 3,
then the clause is already a 3-NAE clause. Otherwise, we work inductively by expressing our
ki-NAE clause as an AND of smaller NAE clauses. We have

NAE(xi,1, . . . , xi,ki) = NAE(xi,1, xi,2, u1) ∧NAE(xi,2, xi,3, u2) ∧ . . .
∧NAE(xi,ki−1, xi,ki , uki−1) ∧NAE(u1, . . . , uk−1),

where u1, . . . , uki−1 are newly-added variables. Observe that if xi,1 = · · · = xi,k, then the
values of u1, . . . , uk−1 must all be equal and the clause is unsatisfiable; conversely, if they are
not all equal, then we will be able to set some pair of ui’s to different values. Applying the

Page 9 of 11

construction repeatedly to expand out the (ki − 1)-NAE clause if necessary, we end up with a
total of

k∑
i=4

(i− 1) ≤ (k − 3)(k − 1) < k2

3-NAE clauses; thus the reduction takes polynomial time and yields a 3-NAE formula of poly-
nomial size, as required.

(b) [⋆⋆⋆⋆] Using the first part of the question, prove that 3-NAE-SAT is NP-complete under Cook
reductions.

Solution: Observe that 3-NAE-SAT is a member of NP, since we can test whether or not an
assignment is satisfying in polynomial time. Since we have reduced NAE-SAT to 3-NAE-SAT,
and we proved in lectures that 3-SAT is NP-complete, it suffices to prove that any polynomial-
time algorithm for NAE-SAT would yield a polynomial-time algorithm for 3-SAT. Consider an
arbitrary 3-SAT instance

F =

ℓ∨
i=1

(xi,1 ∨ xi,2 ∨ xi,3).

We claim this is satisfiable if and only if the NAE-SAT instance

F ′ = NAE(x1,1, x1,2, x1,3, z) ∧NAE(x2,1, x2,2, x2,3, z) ∧ · · · ∧NAE(xℓ,1, xℓ,2, xℓ,3, z)

is satisfiable, where z is a new variable added to every clause. Indeed, given a satisfying
assignment of F , every clause must contain at least one true literal, so it becomes a satisfying
assignment of F ′ on setting z to False. Conversely, given a satisfying assignment a of F ′, we
split into two cases to produce a satisfying assignment of F .

Case 1: Suppose a(z) = False. Then every NAE clause in F ′ must contain a true literal other
than z, so the corresponding AND clauses in F are also satisfied. Thus a yields a satisfying
assignment for F .

Case 2: Suppose a(z) = True. Note that NAE(x, y, z) is satisfied if and only if NAE(¬x,¬y,¬z)
is satisfied. For this reason we define the complementary assignment a, where a(x) = True if
a(x) = False and a(x) = False if a(x) = True. Then a is a satisfying assignment of F ′ in
which a(z) = False, and we are back in Case 1.

We have therefore shown that F ′ is satisfiable if and only if F is satisfiable. Our reduction
simply constructs F ′ from F , then applies our NAE-SAT algorithm to F ′.

(c) [⋆⋆⋆⋆] Monotone 3-NAE-SAT is the version of 3-NAE-SAT in which all literals are un-negated
variables, so we do not allow e.g. a clause NAE(x1,¬x2, x3). Using the second part of the question,
prove that Monotone 3-NAE-SAT is NP-complete under Cook reductions.

Solution: Observe that Monotone 3-NAE-SAT is a member of NP, since we can test whether
or not an assignment is satisfying in polynomial time. Since we have proved that 3-NAE-SAT is
NP-complete, it suffices to prove that any polynomial-time algorithm for monotone 3-NAE-SAT
would yield a polynomial-time algorithm for 3-NAE-SAT. Consider an arbitrary 3-NAE-SAT
instance with variables v1, . . . , vn and formula

F =

ℓ∧
i=1

NAE(xi,1, xi,2, xi,3),

Page 10 of 11

where x1,1, . . . , xℓ,3 are literals taken from {v1, . . . , vn,¬v1, . . . ,¬vn}. We form a corresponding
monotone 3-NAE-SAT instance F ′ by replacing each variable vi with a pair of variables (v−i , v

+
i),

adding a clause NAE(v−i , v
+
i , v

+
i) for each i, replacing each un-negated instance of vi with v

+
i

and replacing each negated instance with v−i . For example, the 3-NAE-SAT formula

NAE(v1, v2,¬v3) ∧ (¬v1, v2,¬v4)

would be replaced by the monotone 3-NAE-SAT formula

NAE(v+1 , v
+
2 , v

−
3) ∧NAE(v−1 , v

+
2 , v

−
4)

∧NAE(v−1 , v
+
1 , v

+
1) ∧NAE(v−2 , v

+
2 , v

+
2) ∧NAE(v−3 , v

+
3 , v

+
3) ∧NAE(v−4 , v

+
4 , v

+
4).

We must show that F is satisfiable if and only if F ′ is satisfiable. Given a satisfying assignment
a of F , we can form a satisfying assignment a′ of F ′ by setting a′(v+i) = a(vi) and a′(v−i) =
¬a(vi). Thus the original NAE clauses evaluate to the same values as before, and we have
a′(v+i) ̸= a′(v−i) for all i so the new NAE clauses are satisfied.

Conversely, suppose a′ is a satisfying assignment of F ′. Then since the new NAE clauses are
satisfied, we have a′(v+i) ̸= a′(v−i) for all i. We then form an assignment a of F by setting
a(vi) = a′(v+i), so that ¬a(vi) = a′(v−i). Thus all the literals in the NAE clauses of F under a
have the same values as they did in F ′ under a′, and so F is satisfiable.

Our reduction therefore forms F ′ from F , applies our Monotone 3-NAE-SAT algorithm to it,
and returns the result.

Page 11 of 11

