
COMS20010 — Problem sheet 9

You don’t have to finish the problem sheets before the class — focus on understanding the material the
problem sheet is based on. If working on the problem sheet is the best way of doing that, for you, then that’s
what you should do, but don’t be afraid to spend the time going back over the quiz and videos instead.
(Then come back to the sheet when you need to revise for the exam!) I’ll make solutions available shortly
after the problem class. As with the Blackboard quizzes, question difficulty is denoted as follows:

⋆ You’ll need to understand facts from the lecture notes.

⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in unfamiliar situations.

⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes and also move a bit
beyond them, e.g. by seeing how to modify an algorithm.

⋆⋆⋆⋆ You’ll need to understand and apply facts and methods from the lecture notes in a way that requires
significant creativity. You should expect to spend at least 5–10 minutes thinking about the question
before you see how to answer it, and maybe far longer. Only 20% of marks in the exam will be from
questions set at this level.

⋆⋆⋆⋆⋆ These questions are harder than anything that will appear on the exam, and are intended for the
strongest students to test themselves. It’s worth trying them if you’re interested in doing an algorithms-
based project next year — whether you manage them or not, if you enjoy thinking about them then it
would be a good fit.

If you think there is an error in the sheet, please post to the unit Team — if you’re right then it’s much
better for everyone to know about the problem, and if you’re wrong then there are probably other people
confused about the same thing.

This problem sheet covers week 10, focusing on complexity theory.

1. [⋆⋆] A clique in a graph G = (V,E) is a set of vertices X ⊆ V in which every two vertices are joined by
an edge, as in the picture below.

X

Prove that the following problem is NP-complete under Karp reductions: given a graph G = (V,E) and
an integer k, does G contain a clique of size at least k? (Hint: To show hardness, try reducing from IS.)

Page 1 of 14

Solution: Let (G, k) be an instance of IS, writing G = (V,E). As in an earlier problem sheet, we
define the complement of G as the graph G = (V,E′), where

E′ = {{u, v} : u, v ∈ V, u ̸= v} \ E.

In other words, G is the graph formed from G by taking the complement of the edge set, removing
all the edges and adding all the non-edges. Then by definition, X is an independent set in G if and
only if X is a clique in G. Thus (G, k) is an instance of the clique decision problem whose answer
is Yes if and only if (G, k) is a Yes instance of IS. Since we can construct (G, k) from (G, k) in
polynomial time, we have established a Karp reduction.

2. Suppose we are given a weighted directed graph G and an integer k, and we want to know whether or
not G contains a Hamilton cycle of length at most k — this is called the Travelling Salesman Problem
(TSP). Recall that a Hamilton cycle is a cycle which starts and ends at the same vertex, and visits every
vertex exactly once.

(a) [⋆⋆] Does this graph have a Hamilton cycle of length less than 5?

b

a d

c

1

2

3

4

1

Solution: No, the only Hamilton cycle in this graph is abcda, and this has length 1+2+3+4 =
10.

(b) [⋆⋆] Consider the following graph.

a b c d

e f g h

i j k l

7 4 12

10 11 13 9

10 6 3

9 8 10 6

20 22 7

Now consider the Hamilton cycle abcdhlkgfjiea. Does this graph have a Hamilton cycle of length
less than 130? In general, if we’re given a Hamilton cycle for G, can we determine its length in time
polynomial in the input size?

Solution: Yes, adding up the weights of the given Hamilton cycle we get

7 + 4 + 12 + 9 + 6 + 7 + 10 + 6 + 8 + 20 + 9 + 10 = 108 < 130.

In general, a Hamilton cycle has |V (G)| edges and addition takes constant time, so we can
check find the length of a given Hamilton cycle in O(|V (G)|) time. The input size in bits is at
least |V (G)| (we need to store the vertices), so this is polynomial in the input size.

Page 2 of 14

(c) [⋆⋆] What does this tell us about TSP in terms of P and NP?

Solution: Given a possible solution, we can verify if it is correct in polynomial time. It’s also a
decision problem. It follows that this problem is in NP. However, this does not tell us anything
about whether or not the problem is in P unless P = NP is resolved.

(d) [⋆⋆] Prove that TSP is NP-complete. (Hint: Check out question 11b).)

Solution: By 11b), the problem of deciding whether or not a directed graph contains a Hamil-
ton cycle is NP-complete; we give a Karp reduction from HC to TSP. Let G be the directed
graph we want to detect a Hamilton cycle in. We define a weighted directed graph G′ from
G by setting the weight of every edge to 1; this takes polynomial time. Then every Hamilton
cycle in G is a weight-|V (G)| Hamilton cycle in G′, so (G′, |V (G)|) is a TSP instance with the
same answer as G and we have a valid Karp reduction.

3. [⋆⋆] You are attempting to form a committee of people to represent Computer Science in an upcoming
faculty restructure. A regrettably large number of stakeholders have ideas about what this committee
should look like: Denoting the stakeholders by S1, . . . , Sn, each stakeholder Si has one list S+

i of people
they would like to be on the committee, and another list S−

i of people they would like not to be on the
committee. (Either list may be empty.) As in real life, the committee can be arbitrarily large.

You quickly realise that it is impossible to satisfy everyone’s preferences at once, so you decide to try
for something easier: you are trying to grant every person at least one of their requests. Thus for every
stakeholder Si, either you have added a person in S+

i to the committee, or you have not added a person
in S−

i to the committee, or both. For example, if everyone requested that John Lapinskas be added
to the committee, then any committee containing John would be a valid committee. Sketch a proof
that even so, deciding whether or not a valid committee exists given S+

1 , . . . , S+
n and S−

1 , . . . , S−
n is an

NP-complete problem.

Solution: The problem is in NP, since given a possible committee we can check whether every
stakeholder has had at least one request satisfied in polynomial time. It remains to prove that any
problem in NP Karp-reduces to the committee existence problem.

By Cook-Levin, it suffices to give a Karp reduction from SAT to the committee existence problem.
Let F be an n-variable m-clause instance of SAT, and let ℓi,j be the j’th literal of the i’th OR clause
of F ; thus

F = (ℓ1,1 ∨ · · · ∨ ℓ1,k1
) ∧ (ℓ2,1 ∨ · · · ∨ ℓ2,k2

) ∧ · · · ∧ (ℓm,1 ∨ · · · ∨ ℓm,km
)

for some k1, . . . , km. Let x1, . . . , xn be the variables of F . We define possible committee members
C1, . . . , Cn and stakeholders S1, . . . , Sm, associating each committee member Ci with the variable
xi. We then take S+

i to be the set of possible members corresponding to all literals which appear
un-negated in the i’th clause, and S−

i to be the set of possible members corresponding to literals
which appear negated. For example, if the first clause is x1 ∨ ¬x2 ∨ x6, then S+

1 = {C1, C6} and
S−
1 = {C2}.

Committee assignments now correspond bijectively to assignments of values to variables; we take xi

to be true if Ci is on the committee, and vice versa. Moreover, stakeholders correspond bijectively
to clauses; stakeholder Si has at least one request satisfied if and only if the i’th clause is true.
Thus valid committees correspond to valid assignments and vice versa. We have therefore given a
polynomial-time map from instances of the committee existence problem to instances of SAT which
preserves the right answer. This is a Karp reduction, so we’re done.

4. In this question we will show that if SAT Karp-reduces to SAT, then NP = Co-NP.

Page 3 of 14

(a) [⋆⋆] Suppose we have an oracle for SAT (the complement of SAT). Show how we can use this to
construct a Cook reduction from SAT to SAT.

Solution: Consider an instance F of SAT. Then SAT with input F is a Yes instance if and
only if F is unsatisfiable, i.e. if and only if SAT with input F is a No instance. Thus given
an oracle for SAT, we can solve SAT(F) in polynomial time by running the oracle on SAT(F)
and returning the opposite answer; this is a valid Cook reduction. It is not, however, a Karp
reduction — for the map F 7→ F to be a Karp reduction, we would need that SAT(F) and
SAT(F) had the same answer.

(b) [⋆⋆] Show that if there is a Karp reduction from SAT to SAT, then SAT ∈ Co-NP and SAT ∈ NP.

Solution: Recall that SAT ∈ Co-NP if and only if SAT ∈ NP, by definition. Thus we must
construct a polynomial-time verifier algorithm V for SAT, so that F is unsatisfiable if and only
if V (F,w) = Yes for some polynomial-sized w.

Suppose a Karp reduction from SAT to SAT exists; given an instance F of SAT, let ϕ(F) be
the corresponding instance of SAT under this reduction. Then by the definition of a Karp
reduction, ϕ(F) is unsatisfiable if and only if F is satisfiable; thus F is unsatisfiable if and only
if ϕ(F) is satisfiable. We can therefore define V (F,w) to compute ϕ(F), check whether w is a
satisfying assignment for ϕ(F) and output the answer.

(c) [⋆⋆] Show that if there is a Karp reduction from SAT to SAT, then NP = Co-NP. (Hint: Show
that NP ⊆ Co-NP and Co-NP ⊆ NP.)

Solution: Suppose such a Karp reduction exists, and let f be any problem in NP; we will show
f ∈ Co-NP. We know there’s a Karp reduction from f to SAT, since SAT is NP-complete, so
by combining these two reductions we get a Karp reduction ϕ from f to SAT. We can now
use exactly the same argument from part b) to show that f ∈ NP and hence f ∈ Co-NP; our
verifier V (x,w) for f again just checks whether w is a satisfying assignment for ϕ(F). Thus
NP ⊆ Co-NP.

Now suppose f is any problem in Co-NP; we will show f ∈ NP. We know f is in NP by the
definition of Co-NP, and hence f is also in Co-NP since we’ve just shown NP ⊆ Co-NP. Since
f is in Co-NP, f must be in NP, and we have Co-NP ⊆ NP. Thus NP = Co-NP as required.

This is really the point of Karp reductions — the fact that the requirements on them are so
strict allows us to use them to investigate questions like NP versus Co-NP. (As a programmer
trying to solve a problem though, you’re generally happy with Cook reductions.)

5. (a) [⋆⋆] Consider a set U = {1, . . . , n}, and subsets S1, . . . , Sm ⊆ U , and a number k ∈ Z. The Set
Cover problem asks if there exists a collection C of at most k sets in U such that their union covers
all of U . Show that VertexCover ≤K SetCover.

Solution: We begin with an instance of vertex cover, and it’s corresponding graph G = (V,E).
In order to construct an instance of set cover, first let U = E. Then, define each subset Si as
the set of edges incident to vertex i in G. It’s easy to see that Si ⊆ E for all i. This construction
can easily be done in polynomial time.

Then, to see correctness, observe that our set cover instance is satisfied if and only if the
collection of subsets includes every edge. On mapping Si → i, this is equivalent to picking at
least one end point of each edge which gives us the result.

(b) [⋆⋆] The Set Packing problem is similar to the Set Cover problem, except this time we are ask-
ing if there is a subset of at least k sets in U such that no two sets in C intersect. Show that

Page 4 of 14

IndependentSet ≤K SetPacking.

Solution: We begin with an instance on independent set and its corresponding graph G =
(V,E). In order to construct an instance of set packing, first let U = E. Then, define each
subset Si as the set of edges incident to vertex i in G. It’s easy to see that Si ⊆ E for all i.
This construction can easily be done in polynomial time.

Then, to see correctness, observe that our set packing instance is satisfied if and only if the
collection of subsets is disjoint. Since the subsets are sets of edges, on mapping Si → i this is
equivalent to picking vertices which have no incident edges in common, i.e. vertices which are
not adjacent. We note that this is precisely the definition of an independent set which gives us
the result. Notice that we actually used exactly the same reduction for both Set Cover and Set
Packing!

(Another, essentially equivalent, way of doing this reduction would be to take U = V and the
subsets to be {{i} ∪N(i) : i ∈ V (G)}.)

(c) [⋆⋆] Now show that IndependentSet ≤C SetCover and IndependentSet ≤C SetPacking.

Solution: Given an oracle for Set Packing and an instance (G, k) of Independent Set, we can
just turn (G, k) into an instance of Set Packing with the same answer in polynomial time as
described above, call our oracle for Set Packing, and then return the answer. We can do the
same for Set Cover. Any Karp reduction can be turned into a Cook reduction this way.

6. In this question, we work with a variant of SAT in which variables cannot be negated. Given literals
a, b and c, which need not be distinct, an even clause EVEN(x, y, z) evaluates to True if and only if
either zero or two of x, y and z evaluate to True. A width-3 positive OR clause is an OR clause of
three variables (i.e. un-negated literals). A positive even formula is a conjunction of even clauses and
width-3 positive OR clauses. For example,

EVEN(a,¬b, c) ∧ EVEN(a, a, d) ∧ (a ∨ b ∨ e) ∧ EVEN(c, d, e).

is a positive even formula, but (¬a ∨ b) is not due to both the negated variable and the fact that the
clause only contains two variables. The decision problem POS-EVEN-SAT asks whether a positive even
formula (given as the input) is satisfiable, in which case the desired output is Yes.

(a) [⋆⋆] Give a Karp reduction from POS-EVEN-SAT to SAT and briefly explain why it works.

Solution: Consider an instance of POS-EVEN-SAT. We convert it to CNF form in polynomial
time. Any positive OR clause is already in CNF form, and we can write each even clause
EVEN(x, y, z) in CNF form as follows:

EVEN(x, y, z) = ¬
(
(x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ ¬z)

)
= (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ ¬z).

(If any variables are repeated more than once within an EVEN clause, we omit the repeats
from the corresponding OR clauses.) Then the resulting CNF formula evaluates to True if and
only if EVEN(x, y, z) does, so the corresponding SAT instance is satisfiable if and only if the
original POS-EVEN-SAT instance is satisfiable, as required.

(b) [⋆⋆⋆] Give a Karp reduction from 3-SAT to POS-EVEN-SAT and briefly explain why it works.

Solution: Consider an instance F of 3-SAT with variables x1, . . . , xn; we will construct an
instance F ′ of POS-EVEN-SAT in polynomial time. We first add a new variable t and a

Page 5 of 14

corresponding clause EVEN(t, t,¬t); observe that t must be True in any satisfying assignment.
We further add clauses EVEN(xi, yi, t) for each i ∈ [n]. Since t must be True in any satisfying
assignment, it follows that yi = ¬xi in any satisfying assignment. Finally, we copy the OR
clauses of F into F ′, replacing each instance of a literal ¬xi with the corresponding variable
yi. If F ′ is satisfiable, then yi = ¬xi for all i, so x1, . . . , xn form a satisfying assignment for
F . Conversely, if F is satisfiable, then we obtain a satisfying assignment for F ′ on taking
yi = ¬xi and t = True. Thus F is a Yes instance of 3-SAT if and only if F ′ is a Yes instance
of POS-EVEN-SAT, as required.

7. [⋆⋆⋆] Suppose you’re working at a hardware store which is trying to put a market research group together.
They serve a lot of markets, from woodworking to metalworking to painting, so they’d like their group
to be diverse. More specifically, they’d like no two people in the group to have bought the same product
from them within the last year. Subject to this, they’d like the group to be as large as possible. They’ve
hired you to develop an algorithm to do this for them. They give you a list of products, a list of
customers, and their sales data for the past year in the format of a two-dimensional array L, where
L[i][j] is the number of copies of product j bought by customer i. Their desired output is a diverse focus
group which is as large as possible. Show that this problem is NP-hard under Cook reductions. (Note:
There are many more questions like this in Chapter 8 of Kleinberg and Tardós.)

Solution: We reduce from IS. Let (G, k) be an instance of IS, where G = (V,E). Form an instance
of the focus group problem by taking the list of products to be E, the list of customers to be V , and
the two-dimensional array to have entries given by L[v][e] = 1 if v is an endpoint of e and L[v][e] = 0
otherwise. Thus two distinct customers u and v have both bought the product e if and only if they
are the two endpoints of e, and hence a set C of customers forms a diverse focus group if and only
if C is an independent set in G. Our Cook reduction simply runs our focus group oracle on the
instance (V,E,L), and returns Yes if the resulting focus group has size at least k and No otherwise.

8. (a) [⋆⋆⋆] Prove that IS is NP-complete under Karp reductions even when the input graph is required
to have maximum degree at most 3. Hint: Try to adapt the NP-completeness proof for IS given in
lectures.

Solution: Membership of NP is immediate. To prove hardness, we reduce from 3-SAT. Let a
be the maximum number of times any literal appears in the given 3-SAT instance. We take
the reduction from 3-SAT to IS given in lectures and change the true/false variable gadgets
from edges into even cycles of length 2a, replacing all edges attached to the “true” vertex of a
variable gadget with an edge attached to an even vertices on the corresponding cycle, and all
edges attached to the “false” vertex of a gadget with an edge attached to an odd vertex on the
corresponding cycle. Here is an example for the formula (x∨¬y∨z)∧(w∨x∨¬z)∧(¬w∨x∨¬y),
where a = 3:

Page 6 of 14

w False w True x False x True y False y True z False z True

x

¬y

z w

x

¬z ¬w

x

¬y

The proof of correctness from lectures still goes through. At most a/2 vertices from each length-
a cycle corresponding to a variable, and at most one vertex from every triangle corresponding
to a clause, can be included in an independent set; thus the size of a maximum independent set
is at most a

2 +m, where m is the number of 3-SAT clauses. In particular, for an independent
set to have size a

2 +m, it must contain one vertex from each clause triangle, and either all the
“False” vertices or all the “True” vertices from each variable cycle. Thus independent sets of
size a

2 +m correspond to satisfying assignments as in the original gadget.

(b) [⋆⋆⋆⋆] Prove that IS is NP-complete under Karp reductions even when the input graph is required
to be cubic — that is, when every vertex has degree exactly 3. Hint: You may find the following
graph useful as a gadget:

v1

v2 v3

v4 v5 v6 v7

v8 v9

Solution: Once again, membership of NP is immediate. Let H be the graph given in the
question. The key properties of H are that:

(i) Every vertex in C has degree 3 except v1, which has degree 2;

(ii) H contains a size-3 independent set including v1 (e.g. {v1, v4, v7});

(iii) H contains a size-3 independent set not including v1 (e.g. {v2, v3, v8});

(iv) Both of the above independent sets are maximum in H. Indeed, let X be an independent
set in H. X can include at most one element of {v4, v5, v8} and one element of {v6, v7, v9}.
If X contains at most one element of {v1, v2, v3} as well, then |X| ≤ 3; otherwise we must

Page 7 of 14

have v2, v3 ∈ X, so v1, v4, v5, v6, v7 /∈ X, and X can contain at most one vertex of {v8, v9}
and again we have |X| ≤ 3.

We now reduce from the problem of part (a): IS in which the input graph has maximum degree
at most 3. Let (G, k) be an instance of this problem. We reduce to cubic IS by attaching
copies of H to each vertex with degree less than 3. More explicitly, let x1, . . . , xt be the set of
vertices in (G, k) with degree less than 3, and let D =

∑t
i=1(3 − d(xi)). We form an instance

(G′, k + 3D) of cubic IS by, for each xi, adding 3− d(xi) disjoint copies of H to G and joining
xi to their copy of v1 by an edge. By (i), the resulting instance is cubic.

We claim that any size-s independent set in G corresponds to a size-(s+ 3D) independent set
in G′ and vice versa. Indeed, by properties (ii) and (iii), any size-s independent set in G can
be extended to a size-(s+ 3D) independent set in G′ by adding three vertices from each copy
of H. Conversely, by property (iv), any size-s + 3D independent set in G contains at most
three vertices from each copy of H, so it can be cut down to a size-s independent set in G by
removing 3D vertices (prioritising those from copies of H).

(c) [⋆⋆] Is the problem of finding a maximum independent set NP-hard when the input graph has
maximum degree 2?

Solution: Probably not. In this case, all components of the input graph G must be paths
or cycles (see the proof of Berge’s Lemma). The maximum independent set of a k-vertex
path or cycle contains ⌊k/2⌋ vertices, so if the components of G are C1, . . . , Cr, then a size-s
independent set exists if and only if

∑r
i=1⌊|V (Ci)|/2⌋ ≥ s. We can check this in polynomial

time with DFS or BFS, so the problem is in P. It is therefore NP-hard if and only if P = NP,
which is unlikely.

9. [⋆⋆⋆] In lectures, we proved that integer linear programming was NP-hard by a long chain of reductions.
Give an alternative proof via a direct Cook reduction from 3-SAT to integer linear programming. (Hint:
The idea is similar to the reduction from vertex cover.)

Solution: This is similar to the reduction from vertex cover. Let F be an instance of 3-SAT. Write
C1, . . . , Cℓ for the OR clauses of F , so F = C1∧· · ·∧Cℓ, and x1, . . . , xn for the variables of F . Then
we formulate an integer linear programming problem as follows:

c1 + · · ·+ cℓ → max, subject to

for all i, ci ≤
∑

i : xi appears un-negated in Ci

yi +
∑

i : xi appears negated in Ci

(1− yi);

y1, . . . , yn, c1, . . . , cℓ ≥ 0;

y1, . . . , yn, c1, . . . , cℓ ≤ 1;

y1, . . . , yn, c1, . . . , cℓ ∈ Z;

To give an example of the constraints in the second line: if C1 = x1∨¬x2∨x4, then the corresponding
constraint would be c1 ≤ y1 + (1− y2) + y4.

Assignments of truth values to variables in F now correspond bijectively to assignments of integer
values to the variables y1, . . . , yn, with an assignment xi = True corresponding to an assignment of
yi = 1 and an assignment of xi = False corresponding to an assignment of yi = 0. Since the ci’s
are bounded above by 1, an optimal solution will have value at most ℓ, with equality if and only if

Page 8 of 14

we can take ci = 1 for all i. Under our correspondence, for given values of y1, . . . , yn, we can take
ci = 1 if and only if some literal in the clause Ci is True. Thus the optimal solution has value ℓ if
and only if there’s a satisfying assignment for F .

Our reduction therefore constructs the linear programming problem as above, invokes our oracle,
and returns Yes if the resulting solution has value ℓ and No otherwise.

10. For all positive integers k, a k-colouring of a graph G = (V,E) is a map c : V → C, where C is a set
of colours with |C| = k. We say c is proper if c(u) ̸= c(v) whenever {u, v} ∈ E, i.e. no two adjacent
vertices receive the same colour. Two colourings of the same graph, with C ⊆ {green,blue,black}, are
shown below. The 3-colouring on the left is proper, but the 2-colouring on the right is not (because the
blue center vertex is adjacent to blue vertices at the corners).

This question is concerned with the following family of decision problems. Let k be a positive integer.
Then the k-colourability problem asks: given a graph G, does G have a proper k-colouring? Note that
k is not part of the input, but part of the problem statement.

(a) [⋆⋆] Give a polynomial-time algorithm for the 2-colourability problem.

Solution: The key point here is that every connected graph has at most two proper 2-
colourings. Indeed, for concreteness let us take C = {blue, green}. Let G be a connected
graph, and suppose c : V → C is a proper 2-colouring. If v ∈ V (G) is coloured green, then
every vertex in N(v) must be coloured blue. Every vertex in N(N(v)) must then be coloured
green, every vertex in N(N(N(v))) must be coloured blue, and so on. Since G is connected,
this process must eventually terminate, forcing the colour of every vertex in G. Likewise, if
c(v) = blue, then every vertex in N(v) must be green and so on, and again the entirety of c is
forced.

Using this, one polynomial-time algorithm would choose an arbitrary vertex v1, colour it blue,
then run breadth-first search from v1. Every time we encounter a new vertex, we colour it
greedily: if it has a blue neighbour then we colour it green; if it has a green neighbour then we
colour it blue; and if it has both blue and green neighbours then we return No. This will give
a valid 2-colouring of the component containing v1, if one exists. If there are no uncoloured
vertices left in the graph, we return Yes. Otherwise, we choose an uncoloured vertex v2, colour
it blue, and repeat the process.

(b) [⋆⋆⋆] Next, for all k > 3, give a Karp reduction from the 3-colourability problem to the k-
colourability problem.

Solution: Let G = (V,E) be an instance of the 3-colourability problem for some k ≥ 4. We
form an instance G′ of the k-colourability problem by adding new vertices x1, . . . , xk−3 joined
to each other and every vertex in G by edges. Thus we have G′ = (V ′, E′), where

V ′ = V ∪ {x1, . . . , xk−3},
E′ = E ∪ {{xi, xj} : i, j ∈ [k − 3], i ̸= j} ∪ {{xi, v} : i ∈ [k − 3], v ∈ V }.

Page 9 of 14

Any proper k-colouring of G′ must colour x1, . . . , xk−3 with k−3 distinct colours, and the whole
of V using only the three remaining colours; thus if G′ is a Yes instance of k-colourability then
G is a Yes instance of 3-colourability. Conversely, any proper 3-colouring of G can be extended
to a proper k-colouring of G′ by colouring x1, . . . , xk−3 arbitrarily with the k − 3 remaining
colours; thus if G is a Yes instance of 3-colourability, then G′ is a Yes instance of k-colourability.
We can form G′ from G in polynomial time, so this is a valid Karp reduction.

(c) [⋆⋆] In fact, 3-colourability is NP-hard under Karp reductions. One way of proving it is to reduce
directly from 3-SAT. A crucial gadget in the standard reduction is as follows:

v1

v2 v3

v4

v5 v6

v7

v8 v9

v10 v11 v12

Note that in any proper 3-colouring, the vertices v1, v2 and v3 must receive different colours. Write
T for the colour of v1, F for the colour of v2, and B for the colour of v3. Prove that the gadget has
the following properties:

� In any proper 3-colouring of the gadget, the vertices v10, v11 and v12 cannot all be coloured F .

� Any other colouring of v10, v11 and v12 using only colours T or F can be extended to a proper
colouring of the entire gadget.

Hint: There are two ways of proving the second part — a long-but-simple way and a short-but-
clever way.

Solution: Suppose for a contradiction that there is a proper 3-colouring in which v1 is coloured
T , v2 is coloured F , v3 is coloured B, and v10, v11 and v12 are all coloured F . Then v4 must
be coloured T ; hence v5 must be coloured B; hence v6 must be coloured F . Now every vertex
in {v7, v8, v9} has a neighbour with colour F , so they cannot be coloured F , but they must all
receive distinct colours. This is impossible.

The long-but-simple way of proving the second part is to just write down the colourings:

Page 10 of 14

T

F B

T

B F

B

T F

F F T

T

F B

T

B F

B

F T

F T F

T

F B

T

B F

T

B F

F T T

T

F B

T

F B

F

B T

T F F

T

F B

T

F B

F

T B

T F T

T

F B

T

F B

F

B T

T T F

T

F B

T

F B

T

B F

T T T

Here’s the short-but-clever way. In making a proper colouring, we know v4 has to be coloured
T , since v2 is coloured F and v3 is coloured B. If v10 is coloured T , then we can colour greedily
in the order v8, v9, v7, v6, v5 (because in doing so we never colour a vertex that could be adjacent
to one vertex each of colours T , B and F), so suppose v10 is coloured F . If v11 is coloured T ,
then we can colour greedily in the order v5, v6, v7, v9, v8 by the same argument, and if v12 is
coloured T then we can colour greedily in the order v5, v6, v7, v8, v9. So if any of v10, v11 and
v12 are coloured T then we have a proper colouring as required.

(d) [⋆⋆⋆⋆] Using the gadget from the previous part, or otherwise, prove that 3-colourability is NP-
complete under Karp reductions.

Solution: Any Yes instance of 3-colourability has an associated 3-colouring, which can be
verified in polynomial time, so the problem is a member of NP. It remains to prove NP-hardness
under Karp reductions.

The key insight here is that the gadget above can be used to add a constraint to colourings

Page 11 of 14

in an existing graph. Suppose we take an existing graph and layer a copy of the gadget on
top, adding new vertices for v4, . . . , v9 but identifying v1, v2, v3, v10, v11 and v12 with existing
vertices (as in the picture below). Then it has the effect of forbidding all 3-colourings in which
v10, v11 and v12 receive colour F , while allowing all 3-colourings in which they receive some
other combination of F and T , as part 3c implies these can be extended to proper 3-colourings
of the entire gadget. This is a common design pattern in gadget construction; the vertices v1,
v2, v3, v10, v11 and v12 are colloquially known as the terminals of the gadget.

v10

v11

v12v3

v1

v2 v10

v11

v12v3

v1

v2

We will use this property to simulate our clauses. Let F be a width-3 CNF formula with
variables x1, . . . , xn. To form our instance G of the 3-colourability problem, we proceed as
follows:

� Add a triangle with new vertices B, T and F .

� For each variable xi, add vertices Xi and ¬Xi, and add the triangle Xi(¬Xi)B to the
edge set.

� For each clause Ci, add a copy of the gadget above, identifying v1 with T , v2 with F ,
v3 with B, and v10, v11 and v12 with the vertices corresponding to the literals in Ci; for
example, if the clause reads x2∧x3∧¬x5, then identify v10, v11, and v12 with X2, X3 and
¬X5. Thus for each Ci we have added only six new vertices (corresponding to v4, . . . , v9).

In the graph we have constructed after the second bullet point, we see that proper 3-colourings
correspond almost bijectively to assignments of values to variables. Indeed, in any proper 3-
colouring, write B for the colour of B, T for the colour of T , and F for the colour of F . Then
each vertex Xi must receive one colour from {T, F}, and each vertex ¬Xi must receive the
other; this corresponds to the assignment which maps xi to True if Xi receives colour T and
¬Xi receives colour F , and to False if Xi receives colour F and ¬Xi receives colour T . This
correspondence is a bijection up to the choice of colours for B, F and T .

Under this lens, then, the effect of adding the gadget corresponding to clause Ci is to forbid
assignments in which Ci is false, and only those assignments. Indeed, by part 3c, any proper
3-colouring of the graph can be extended into a proper 3-colouring of the gadget unless v10, v11
and v12 all recieve colour F — in other words, unless their corresponding literals all evaluate
to False. Thus any 3-colouring of our graph must correspond to an assignment in which
all clauses are true, i.e. a satisfying assignment, and vice versa. Since we constructed G in
polynomial time, we have given a valid Karp reduction as required. A more detailed version of
this argument is contained in Chapter 8.7 of Kleinberg and Tardós’ book Algorithm Design.

11. (a) [⋆⋆⋆⋆] Prove that the problem of deciding whether or not a directed graph contains a (directed)
Hamilton cycle is NP-complete under Karp reductions. Hint: One valid approach involves replacing
variables by path gadgets with edges in both directions, where travelling one direction on the path
corresponds to an assignment of true and travelling the other direction corresponds to an assignment
of false, and replacing clauses with individual vertices.

Page 12 of 14

Solution: Given a directed graph G and a bit string w, it is easy to decide whether w represents
a directed Hamilton cycle of G in polynomial time, so the problem is a member of NP. It remains
to prove NP-hardness.

Let F be an instance of 3-SAT. Let x1, . . . , xn be the variables it contains (in some arbitrary
order). Write F = C1 ∧ C2 ∧ · · · ∧ Ck, where each Ci is a disjunctive clause; and write each
Ci = ci,1∨· · ·∨ci,3, where each ci,j is either xki,j or ¬xki,j for some variable xki,j . We construct
an instance G of the directed Hamilton cycle problem as follows.

For each variable xi of F , add a bidirectional (3k + 2)-edge path Pi = p0p1 . . . p3k to G, which
we write as pi,1 . . . pi,k+1. Add directed edges from both endpoints of each Pi to both endpoints
of Pi+1 for all i ∈ [n− 1], and add directed edges from both endpoints of Pn to both endpoints
of P1. For each clause Cj , add a vertex yj to G. If xi appears in Cj as an un-negated variable,
then add the edges (pi,3j+1, yj) and (yj , pi,3j+2) to G. If xi appears in Cj as a negated variable,
then add the edges (pi,3j+2, yj) and (yj , pi,3j+1) to G.

Any assignment S of F corresponds to a unique cycle W in G as follows. Let P i be the path
formed by reversing Pi. Let W be the (non-Hamilton) cycle formed by concatenating the paths
Q1 . . . Qk, where Qi = Pi if xi is true under S, and Qi = P i if xi is false under S. Then W
covers every vertex except y1, . . . , yk.

If in addition S is satisfying, then W can be extended into a Hamilton cycle W ′ as follows. Each
clause Ci must contain some true literal ci,j , with corresponding variable xj . If xj is true under
S, replace the edge (pj,3i+1, pk,3i+2) by the pair of edges (pj,3i+1, yi) and (yi, pj,3i+2) in W ′;
otherwise, replace the edge (pj,3i+2, pk,3i+1) by the pair of edges (pj,3i+2, yi) and (yi, pj,3i+1) in
W . Then W is a Hamilton cycle.

Moreover, it can be shown that every Hamilton cycle in G is necessarily of this form. The key
facts are:

� If a Hamilton cycle enters a clause vertex yi from a path Pj , then it must immediately
return to Pj .

� If a Hamilton cycle enters a path Pi going in one direction, then it must continue in that
direction with occasional detours to clause vertices.

G can be computed from F in polynomial time, so we have given a Karp reduction as required.

(b) [⋆⋆⋆] Prove that the problem of deciding whether or not an undirected graph contains a Hamilton
cycle is NP-complete under Karp reductions. Hint: One valid approach uses small vertex gadgets.

Solution: As before, given a graph G and a bit string w, it is easy to decide whether w
represents a Hamilton cycle of G in polynomial time, so the problem is a member of NP. It
remains to prove hardness.

Let G = (V,E) be a directed n-vertex graph. We define a corresponding instance f(G) =
(V ′, E′) of UndirHC as follows. We take V ′ to be a set of 3|V | vertices which we denote by
V ′ =

⋃
v∈V {v1, v2, v3}. We define E′ from E as follows:

� join each vertex v1 ∈ V ′ to v2 and v3;

� for each directed edge (u, v) ∈ E, join u2 to v3.

We can certainly compute f(G) in polynomial time, so it suffices to prove that f(G) contains
a Hamilton cycle if and only if G does. This holds because the edge (u, v) is present in G if
and only if the path u1u2v3v1 is present in f(G). So if G contains a Hamilton cycle v1 . . . vn,
then v11v

1
2v

2
3v

2
1v

2
2v

3
3v

3
1 . . . v

n
1 v

n
2 v

1
3 is a Hamilton cycle in f(G). Conversely, if f(G) contains a

Page 13 of 14

Hamilton cycle, then it must be divided into subpaths of the form u1u2v3v1, corresponding to
a Hamilton cycle in G. Indeed, u1 has degree 2, so it must send an edge to u2 within the cycle;
u2 only sends edges to u1 and vertices of the form v3, so it must send its second cycle edge to
some v3; and v3 is adjacent to v2, which has degree 2, so v3 must send its second cycle edge to
v2 (or v2 cannot be included in the cycle).

Page 14 of 14

