Defining O-notation (recap) COMS20010 2020, Video lecture 1-3

John Lapinskas, University of Bristol

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters more than constant factors. Also, constant factors are implementation-dependent. So we focus on growth rate.

We would like $f(n) \in O(g(n))$ to mean:

- $f(n)$ "grows no faster than" $g(n)$, ignoring constant factors.

We would like $f(n) \in O(g(n))$ to mean:

- $f(n)$ "grows no faster than" $g(n)$, ignoring constant factors.
- There exists $C>0$ such that $f(n)$ "grows no faster than" $C \cdot g(n)$.

We would like $f(n) \in O(g(n))$ to mean:

- There exists $C>0$ such that $f(n)$ "grows no faster than" $C \cdot g(n)$.
- There exists $C>0$ such that $f(n) \leq C \cdot g(n)$ whenever n is sufficiently large.

We would like $f(n) \in O(g(n))$ to mean:

- There exists $C>0$ such that $f(n) \leq C \cdot g(n)$ whenever n is sufficiently large.
- There exist $C, n_{0}>0$ such that $f(n) \leq C \cdot g(n)$ whenever $n \geq n_{0}$.

We would like $f(n) \in O(g(n))$ to mean:
There exist $C, n_{0}>0$ such that $f(n) \leq C \cdot g(n)$ whenever $n \geq n_{0}$.
This rigorous definition is "just" a more precise version of our intuition.

Other O-notation

$f(n) \in O(g(n))$ is good notation for " f grows no faster than g, ignoring constants". But what if we want to say " g grows no slower than f "?

Notation	Intuitive meaning	Analogue
$f(n) \in O(g(n))$	f grows at most as fast as g	\leq
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	$=$
$f(n) \in o(g(n))$	f grows strictly less fast than g	$<$
$f(n) \in \omega(g(n))$	f grows strictly faster than g	$>$

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_{0}: \forall n \geq n_{0}: f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_{0}: \forall n \geq n_{0}: f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_{0}: \forall n \geq n_{0}: c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C: \exists n_{0}: \forall n \geq n_{0}: f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c: \exists n_{0}: \forall n \geq n_{0}: f(n) \geq c \cdot g(n)$

Examples

Example 1: Prove $n^{2}-5 n+12 \in \Theta\left(n^{2}\right)$ directly from the definition.
Remember the definition: proving $n^{2}-5 n+12 \in \Theta\left(n^{2}\right)$ means proving there exist c, C and n_{0} such that $c n^{2} \leq n^{2}-5 n+12 \leq C n^{2}$ for all $n \geq n_{0}$.
We expect $n^{2}-5 n+12 \approx n^{2}$ for large n, so we could e.g. set $c=1 / 2$ and $C=2$ and solve the quadratic. But let's be lazy! No need to optimise. We have

$$
\begin{aligned}
& n^{2}-5 n+12 \leq n^{2}+12=n^{2}\left(1+\frac{12}{n^{2}}\right) \\
& n^{2}-5 n+12 \geq n^{2}-5 n=n^{2}\left(1-\frac{5}{n}\right)
\end{aligned}
$$

Looking at it like this, it's much easier to see that

$$
\begin{aligned}
& n^{2}-5 n+12 \leq 13 n^{2} \text { for all } n \geq 1 \\
& n^{2}-5 n+12 \geq n^{2} / 2 \text { for all } n \geq 10\left(\text { so } \frac{5}{n} \leq \frac{1}{2}\right)
\end{aligned}
$$

So we prove $n^{2}-5 n+12 \in \Theta\left(n^{2}\right)$ by taking $c=\frac{1}{2}, C=13$, and $n_{0}=10$.

Examples

Example 2: Prove $n!\in \omega\left(2^{n}\right)$ directly from the definition.
Remember the definition: proving $n!\in \omega\left(2^{n}\right)$ means proving that for all $c>0$, there exists n_{0} such that for all $n \geq n_{0}, n!\geq c \cdot 2^{n}$.

So we're given a constant c, and we need to show $n!\geq c \cdot 2^{n}$ when n is sufficiently large. Remember we have

$$
n!=\underbrace{n \cdot(n-1) \cdots \cdots 1}_{n \text { terms }}, \quad 2^{n}=\underbrace{2 \cdot 2 \cdots \cdots 2}_{n \text { terms }} .
$$

So we have a lot of wiggle room to bound things term-by-term.
Let's use the fact that $n!\geq 4^{n-3}=2^{n} \cdot 2^{n-6}$.
Thus $n!\geq c \cdot 2^{n}$ whenever $2^{n-6} \geq c$, i.e. whenever $n \geq \log c+6$.
So we prove $n!=\omega\left(2^{n}\right)$ by taking $n_{0} \geq \log c+6$.

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.
For example, an algorithm running on an n-vertex m-edge graph will often have running time depending on both m and n.

What does it mean to say that e.g. $f(m, n) \in O(m n)$ or $f(m, n) \in \Theta\left(m^{2} \log n\right)$?

The only difference is that instead of requiring n to be sufficiently large, we require all variables to be sufficiently large.

For example, $f(m, n) \in O(g(m, n))$ when there exist C, \boldsymbol{m}_{0} and $\boldsymbol{n}_{\mathbf{0}}$ such that $f(m, n) \leq C \cdot g(m, n)$ whenever $m \geq m_{0}$ and $n \geq n_{0}$.

All the useful properties of single-variable O-notation (see next video!) carry over to multi-variable O-notation, so e.g. if $f(m, n) \in O(g(m, n))$ and $f(m, n) \in \Omega(g(m, n))$ then we still have $f(m, n) \in \Theta(g(m, n))$.

An important clarification (added after recording)

O-notation can behave strangely with negative functions.
But we only care about O-notation for running times, which are positive!
So whenever you are asked to prove something general about O-notation in this course, you can assume the functions involved are non-negative.

But logarithms get used to bound running times all the time, and e.g. $n \log (n / 100)$ is negative for small n. Since it's positive for large n, we'd still like to be able to say e.g. $n \log (n / 100) \in \Theta(n \log n)$.

So the formal requirement is that the functions involved are eventually non-negative - that is, before we can say $f(n) \in O(g(n))$ or similar, we require that $f(n), g(n) \geq 0$ for all sufficiently large n.

Any fact that holds about O-notation for non-negative functions will also hold for eventually non-negative functions, by taking n_{0} large enough that "eventually non-negative" becomes "non-negative".

