
Defining O-notation (recap)
COMS20010 2020, Video lecture 1-3

John Lapinskas, University of Bristol

John Lapinskas Video 1-3 1 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)
0.01 2n

John Lapinskas Video 1-3 2 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)
0.01 2n

John Lapinskas Video 1-3 2 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-20

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

John Lapinskas Video 1-3 2 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-50

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40 45 50

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

John Lapinskas Video 1-3 2 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-200

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

John Lapinskas Video 1-3 2 / 8

Why O-notation?

Intuition: As input sizes get large, asymptotic growth rate matters
more than constant factors. Also, constant factors are
implementation-dependent. So we focus on growth rate.

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

John Lapinskas Video 1-3 2 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

f (n) “grows no faster than” g(n), ignoring constant factors.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

f (n) “grows no faster than” g(n), ignoring constant factors.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

f (n) “grows no faster than” g(n), ignoring constant factors.

There exists C > 0 such that f (n) “grows no faster than” C · g(n).

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) “grows no faster than” C · g(n).

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) “grows no faster than” C · g(n).

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) “grows no faster than” C · g(n).
There exists C > 0 such that f (n) ≤ C · g(n) whenever n is
sufficiently large.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) ≤ C · g(n) whenever n is
sufficiently large.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) ≤ C · g(n) whenever n is
sufficiently large.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exists C > 0 such that f (n) ≤ C · g(n) whenever n is
sufficiently large.

There exist C , n0 > 0 such that f (n) ≤ C · g(n) whenever n ≥ n0.

John Lapinskas Video 1-3 3 / 8

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

runtime

4(n-1)
5log(n)
0.1 n2

n log(n / 2)

We would like f (n) ∈ O(g(n)) to mean:

There exist C , n0 > 0 such that f (n) ≤ C · g(n) whenever n ≥ n0. ✓

This rigorous definition is “just” a more precise version of our intuition.

John Lapinskas Video 1-3 3 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)
f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)
f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)

f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)
f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)
f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)
f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)
f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)

f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)
f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)
f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)

f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Other O-notation

f (n) ∈ O(g(n)) is good notation for “f grows no faster than g , ignoring
constants”. But what if we want to say “g grows no slower than f ”?

Notation Intuitive meaning Analogue

f (n) ∈ O(g(n)) f grows at most as fast as g ≤
f (n) ∈ Ω(g(n)) f grows at least as fast as g ≥
f (n) ∈ Θ(g(n)) f at the same rate as g =
f (n) ∈ o(g(n)) f grows strictly less fast than g <
f (n) ∈ ω(g(n)) f grows strictly faster than g >

Notation Formal definition

f (n) ∈ O(g(n)) ∃C , n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ Ω(g(n)) ∃c , n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)
f (n) ∈ Θ(g(n)) ∃c , C , n0 : ∀n ≥ n0 : c · g(n) ≤ f (n) ≤ C · g(n)
f (n) ∈ o(g(n)) ∀C : ∃n0 : ∀n ≥ n0 : f (n) ≤ C · g(n)
f (n) ∈ ω(g(n)) ∀c : ∃n0 : ∀n ≥ n0 : f (n) ≥ c · g(n)

John Lapinskas Video 1-3 4 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic. But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic. But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic.

But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic. But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic. But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 1: Prove n2 − 5n + 12 ∈ Θ(n2) directly from the definition.

Remember the definition: proving n2 − 5n + 12 ∈ Θ(n2) means proving
there exist c , C and n0 such that cn2 ≤ n2 − 5n+12 ≤ Cn2 for all n ≥ n0.

We expect n2 − 5n+ 12 ≈ n2 for large n, so we could e.g. set c = 1/2 and
C = 2 and solve the quadratic. But let’s be lazy! No need to optimise.
We have

n2 − 5n + 12 ≤ n2 + 12 = n2(1 + 12
n2
),

n2 − 5n + 12 ≥ n2 − 5n = n2(1− 5
n).

Looking at it like this, it’s much easier to see that

n2 − 5n + 12 ≤ 13n2 for all n ≥ 1,

n2 − 5n + 12 ≥ n2/2 for all n ≥ 10 (so 5
n ≤ 1

2).

So we prove n2 − 5n + 12 ∈ Θ(n2) by taking c = 1
2 , C = 13, and n0 = 10.

John Lapinskas Video 1-3 5 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.
Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.
Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.
Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.

Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.
Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Examples

Example 2: Prove n! ∈ ω(2n) directly from the definition.

Remember the definition: proving n! ∈ ω(2n) means proving that for all
c > 0, there exists n0 such that for all n ≥ n0, n! ≥ c · 2n.

So we’re given a constant c , and we need to show n! ≥ c · 2n when n is
sufficiently large. Remember we have

n! = n · (n − 1) · · · · · 1︸ ︷︷ ︸
n terms

, 2n = 2 · 2 · · · · · 2︸ ︷︷ ︸
n terms

.

So we have a lot of wiggle room to bound things term-by-term.

Let’s use the fact that n! ≥ 4n−3 = 2n · 2n−6.
Thus n! ≥ c · 2n whenever 2n−6 ≥ c, i.e. whenever n ≥ log c + 6.

So we prove n! = ω(2n) by taking n0 ≥ log c + 6.

John Lapinskas Video 1-3 6 / 8

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often
have running time depending on both m and n.

What does it mean to say that e.g. f (m, n) ∈ O(mn) or
f (m, n) ∈ Θ(m2 log n)?

The only difference is that instead of requiring n to be sufficiently large,
we require all variables to be sufficiently large.

For example, f (m, n) ∈ O(g(m, n)) when there exist C , m0 and n0 such
that f (m, n) ≤ C · g(m, n) whenever m ≥ m0 and n ≥ n0.

All the useful properties of single-variable O-notation (see next video!)
carry over to multi-variable O-notation, so e.g. if f (m, n) ∈ O(g(m, n))
and f (m, n) ∈ Ω(g(m, n)) then we still have f (m, n) ∈ Θ(g(m, n)).

John Lapinskas Video 1-3 7 / 8

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often
have running time depending on both m and n.

What does it mean to say that e.g. f (m, n) ∈ O(mn) or
f (m, n) ∈ Θ(m2 log n)?

The only difference is that instead of requiring n to be sufficiently large,
we require all variables to be sufficiently large.

For example, f (m, n) ∈ O(g(m, n)) when there exist C , m0 and n0 such
that f (m, n) ≤ C · g(m, n) whenever m ≥ m0 and n ≥ n0.

All the useful properties of single-variable O-notation (see next video!)
carry over to multi-variable O-notation, so e.g. if f (m, n) ∈ O(g(m, n))
and f (m, n) ∈ Ω(g(m, n)) then we still have f (m, n) ∈ Θ(g(m, n)).

John Lapinskas Video 1-3 7 / 8

Multi-variable O-notation

We will often need O-notation for functions of more than one variable.

For example, an algorithm running on an n-vertex m-edge graph will often
have running time depending on both m and n.

What does it mean to say that e.g. f (m, n) ∈ O(mn) or
f (m, n) ∈ Θ(m2 log n)?

The only difference is that instead of requiring n to be sufficiently large,
we require all variables to be sufficiently large.

For example, f (m, n) ∈ O(g(m, n)) when there exist C , m0 and n0 such
that f (m, n) ≤ C · g(m, n) whenever m ≥ m0 and n ≥ n0.

All the useful properties of single-variable O-notation (see next video!)
carry over to multi-variable O-notation, so e.g. if f (m, n) ∈ O(g(m, n))
and f (m, n) ∈ Ω(g(m, n)) then we still have f (m, n) ∈ Θ(g(m, n)).

John Lapinskas Video 1-3 7 / 8

An important clarification (added after recording)

O-notation can behave strangely with negative functions.

But we only care about O-notation for running times, which are positive!

So whenever you are asked to prove something general about O-notation
in this course, you can assume the functions involved are non-negative.

But logarithms get used to bound running times all the time, and e.g.
n log(n/100) is negative for small n. Since it’s positive for large n, we’d
still like to be able to say e.g. n log(n/100) ∈ Θ(n log n).

So the formal requirement is that the functions involved are eventually
non-negative — that is, before we can say f (n) ∈ O(g(n)) or similar, we
require that f (n), g(n) ≥ 0 for all sufficiently large n.

Any fact that holds about O-notation for non-negative functions will also
hold for eventually non-negative functions, by taking n0 large enough that
“eventually non-negative” becomes “non-negative”.

John Lapinskas Video 1-3 8 / 8

