Properties of O-notation COMS20010 2020, Video lecture 1-4

John Lapinskas, University of Bristol

The key to working with O-notation

Last time about comparing functions using the definitions of O-notation.
You should almost never actually do this!
Your life will be much happier if you work mostly based on intuition.
Usually (not always!) if something is true for \leq, it is true for 0 .
For example, if $x \leq y$ and $y \leq z$ then $x \leq z$;
likewise, if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
The same goes for \geq and $\Omega,=$ and $\Theta,<$ and o, and $>$ and ω.
For example, if $x \leq y$ and $x \geq y$ then $x=y$;
likewise, if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$, then $f(n) \in \Theta(g(n))$.
This, combined with the following rough hierarchy, will let you solve most problems without thinking about C 's or n_{0} 's:

$$
n!\in \omega\left(3^{n}\right) \subseteq \omega\left(2^{n}\right) \subseteq \omega\left(n^{2}\right) \subseteq \omega(n) \subseteq \omega\left(\log ^{2} n\right) \subseteq \omega(\log n) \subseteq \omega(1)
$$

When you should work formally

The time to fall back to definitions is when you need to confirm your intuition - when you're not sure if a general principle holds or not.

Example: Is it true that if $f(n) \in \Omega(g(n))$, then $f(n)^{2} \in \Omega\left(g(n)^{2}\right)$?
Think back to the definitions.
We have: There exist $c, n_{0}>0$ such that $f(n) \geq c g(n)$ for all $n \geq n_{0}$. We want: There exist $c^{\prime}, n_{0}^{\prime}>0$ such that $f(n)^{2} \geq c^{\prime} g(n)^{2}$ for all $n \geq n_{0}^{\prime}$. So we can just take $c^{\prime}=c^{2}$ and $n_{0}^{\prime}=n_{0}$ to prove $f(n)^{2} \in \Omega\left(g(n)^{2}\right)$.

Example: Is it true that if $f(n)<g(n)$ for all n, then $f(n) \in o(g(n))$?
We want: For all $C>0$, there exists n_{0} such that $f(n)<C g(n)$ for all

$$
n \geq n_{0}
$$

Since we only have $f(n)<g(n)$, this looks dubious when $C \ll 1 \ldots$
One counterexample is $f(n)=n / 2, g(n)=n($ taking $C=1 / 4)$.

L'Hôpital's rule

This is like a more powerful form of the racetrack principle from last year.
L'Hôpital's rule: Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable and that

$$
f(n), g(n) \in \omega(1) \text {. Then: }
$$

- $f(n) \in \omega(g(n))$ if and only if $f^{\prime}(n) \in \omega\left(g^{\prime}(n)\right)$; and
- $f(n) \in o(g(n))$ if and only if $f^{\prime}(n) \in o\left(g^{\prime}(n)\right)$.

Intuitively: This makes sense since f^{\prime} and g^{\prime} are the rates of change of f and g - if f grows much faster than g, then f^{\prime} should grow much faster than g^{\prime}, and vice versa.

I won't prove it, though! (It's also a weaker form of the "real" result.)
Example: Prove that $n \in o\left(b^{n}\right)$ for all constants $b>1$.
By L'Hôpital's rule, this holds if and only if $1 \in o\left(b^{n} \ln b\right)=o\left(b^{n}\right)$. For any $C>0$, we have $1 \leq C \cdot b^{n}$ for all $n \geq \log _{b}(1 / C)$, so this is true.

Example: Proving that exponential beats polynomial

Theorem: For all polynomial functions $f(n)=\sum_{i} a_{i} n^{x_{i}}$ and all $y>1$, we have $f(n) \in o\left(y^{n}\right)$.

Proof: By the hierarchy, we have $n^{x_{i}} \in o\left(n^{x_{j}}\right)$ whenever $x_{i}<x_{j}$.
Fact: If $g(n) \in o(f(n))$, then $f(n)+g(n) \in \Theta(f(n))$. (Why?)
Hence $f(n) \in \Theta\left(n^{x}\right)$ for some $x>0$, and we must show $n^{x}=o\left(y^{n}\right)$.
We have that $f(n)^{x} \in o\left(g(n)^{x}\right)$ if and only if $f(n) \in o(g(n))$, so it is enough to show $n \in o\left(y^{n / x}\right)=o\left(\left(y^{1 / x}\right)^{n}\right)$.

We already saw this is true via L'Hôpital, so we're done.
Notice the overall process here: rather than working with definitions directly, we reduce the question to one we know how to solve.

Example: Dealing with unpleasant exponentials

Example: Prove that $2^{(\log \log n)^{2}} \in o(n)$ and $2^{(\log \log n)^{2}} \in \omega(\log n)$.
Problems like this are much easier if you give the two things you're trying to compare a common base.
Here, we have $n=2^{\log n}$ and $\log n=2^{\log \log n}$.
We have $(\log \log n)^{2} \in o(\log n)$ and $(\log \log n)^{2}=\omega(\log \log n)$, so "clearly" $2^{(\log \log n)^{2}} \in o(n)$ and $2^{(\log \log n)^{2}} \in \omega(\log n)$.
All we need is that if $f(n)=o(g(n))$, then $2^{f(n)} \in o\left(2^{g(n)}\right)$, which is true... as long as $g(n) \in \omega(1)$. (Exercise!)
(In practice, if you see a running time like this, you should be very careful even though it's theoretically fast - the constants are probably massive...)

