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The key to working with O-notation

Last time about comparing functions using the definitions of O-notation.

You should almost never actually do this!

Your life will be much happier if you work mostly based on intuition.

Usually (not always!) if something is true for ≤, it is true for O.
For example, if x ≤ y and y ≤ z then x ≤ z ;
likewise, if f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f (n) ∈ O(h(n)).

The same goes for ≥ and Ω, = and Θ, < and o, and > and ω.
For example, if x ≤ y and x ≥ y then x = y ;
likewise, if f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n)), then f (n) ∈ Θ(g(n)).

This, combined with the following rough hierarchy, will let you solve most
problems without thinking about C ’s or n0’s:

n! ∈ ω(3n) ⊆ ω(2n) ⊆ ω(n2) ⊆ ω(n) ⊆ ω(log2 n) ⊆ ω(log n) ⊆ ω(1).
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When you should work formally

The time to fall back to definitions is when you need to confirm your
intuition — when you’re not sure if a general principle holds or not.

Example: Is it true that if f (n) ∈ Ω(g(n)), then f (n)2 ∈ Ω(g(n)2)?

Think back to the definitions.
We have: There exist c , n0 > 0 such that f (n) ≥ cg(n) for all n ≥ n0.
We want: There exist c ′, n′0 > 0 such that f (n)2 ≥ c ′g(n)2 for all n ≥ n′0.

So we can just take c ′ = c2 and n′0 = n0 to prove f (n)2 ∈ Ω(g(n)2). ✓

Example: Is it true that if f (n) < g(n) for all n, then f (n) ∈ o(g(n))?

We want: For all C > 0, there exists n0 such that f (n) < Cg(n) for all
n ≥ n0.

Since we only have f (n) < g(n), this looks dubious when C ≪ 1...
One counterexample is f (n) = n/2, g(n) = n (taking C = 1/4). ✓
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L’Hôpital’s rule

This is like a more powerful form of the racetrack principle from last year.

L’Hôpital’s rule: Suppose f , g : R → R are differentiable and that
f (n), g(n) ∈ ω(1). Then:

f (n) ∈ ω(g(n)) if and only if f ′(n) ∈ ω(g ′(n)); and

f (n) ∈ o(g(n)) if and only if f ′(n) ∈ o(g ′(n)).

Intuitively: This makes sense since f ′ and g ′ are the rates of change of f
and g — if f grows much faster than g , then f ′ should grow much faster
than g ′, and vice versa.

I won’t prove it, though! (It’s also a weaker form of the “real” result.)

Example: Prove that n ∈ o(bn) for all constants b > 1.

By L’Hôpital’s rule, this holds if and only if 1 ∈ o(bn ln b) = o(bn).
For any C > 0, we have 1 ≤ C · bn for all n ≥ logb(1/C ), so this is true.
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By L’Hôpital’s rule, this holds if and only if 1 ∈ o(bn ln b) = o(bn).
For any C > 0, we have 1 ≤ C · bn for all n ≥ logb(1/C ), so this is true.

John Lapinskas Video 1-4 4 / 6



Example: Proving that exponential beats polynomial

Theorem: For all polynomial functions f (n) =
∑

i ain
xi and all y > 1,

we have f (n) ∈ o(yn).

Proof: By the hierarchy, we have nxi ∈ o(nxj ) whenever xi < xj .

Fact: If g(n) ∈ o(f (n)), then f (n) + g(n) ∈ Θ(f (n)). (Why?)

Hence f (n) ∈ Θ(nx) for some x > 0, and we must show nx = o(yn).

We have that f (n)x ∈ o(g(n)x) if and only if f (n) ∈ o(g(n)), so it is
enough to show n ∈ o(yn/x) = o((y1/x)n).

We already saw this is true via L’Hôpital, so we’re done.

Notice the overall process here: rather than working with definitions
directly, we reduce the question to one we know how to solve.
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Notice the overall process here: rather than working with definitions
directly, we reduce the question to one we know how to solve.

John Lapinskas Video 1-4 5 / 6



Example: Proving that exponential beats polynomial

Theorem: For all polynomial functions f (n) =
∑

i ain
xi and all y > 1,

we have f (n) ∈ o(yn).

Proof: By the hierarchy, we have nxi ∈ o(nxj ) whenever xi < xj .

Fact: If g(n) ∈ o(f (n)), then f (n) + g(n) ∈ Θ(f (n)). (Why?)

Hence f (n) ∈ Θ(nx) for some x > 0, and we must show nx = o(yn).

We have that f (n)x ∈ o(g(n)x) if and only if f (n) ∈ o(g(n)), so it is
enough to show n ∈ o(yn/x) = o((y1/x)n).

We already saw this is true via L’Hôpital, so we’re done.
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Example: Dealing with unpleasant exponentials

Example: Prove that 2(log log n)
2 ∈ o(n) and 2(log log n)

2 ∈ ω(log n).

Problems like this are much easier if you give the two things you’re trying
to compare a common base.

Here, we have n = 2log n and log n = 2log log n.

We have (log log n)2 ∈ o(log n) and (log log n)2 = ω(log log n), so
“clearly” 2(log log n)

2 ∈ o(n) and 2(log log n)
2 ∈ ω(log n).

All we need is that if f (n) = o(g(n)), then 2f (n) ∈ o(2g(n)), which is
true... as long as g(n) ∈ ω(1). (Exercise!) ✓

(In practice, if you see a running time like this, you should be very careful
even though it’s theoretically fast — the constants are probably massive...)
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“clearly” 2(log log n)

2 ∈ o(n) and 2(log log n)
2 ∈ ω(log n).

All we need is that if f (n) = o(g(n)), then 2f (n) ∈ o(2g(n)), which is
true... as long as g(n) ∈ ω(1). (Exercise!) ✓

(In practice, if you see a running time like this, you should be very careful
even though it’s theoretically fast — the constants are probably massive...)
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