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Unweighted interval scheduling (recap from week 2)

Motivation: A satellite imaging service wants to use its camera to fill as many
orders as possible, but it can only take one picture at once.

Input: A set of intervals, e.g.
R = {(0, 30), (5, 20), (15, 55), (20, 25), (25, 40), (38, 50), (45, 60)}.

Output: A maximum compatible set R′ ⊆ R — that is, for all
(s, f ), (s ′, f ′) ∈ R′, we have either s ′, f ′ ≥ f or s ′, f ′ ≤ s.

00 10 20 30 40 50 60

Algorithm: Sort R in increasing order of finishing time, then add them to the
output greedily while maintaining compatibility.
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Weighted interval scheduling

But we wouldn’t really want to fill as many orders as possible, right?

We’d want to earn as much money as possible.

Input: A set of intervals R and a weight function w : R → Q≥0.

Output: A compatible set R′ ⊆ R of maximum weight
∑

R∈R′ w(R).

00 10 20 30 40 50 60

15

80

100

30 50

60

40

Weight 100Weight 135Not compatibleWeight 140

In this case, the desired output has weight 140. But our old greedy
algorithm fails! There is no known greedy algorithm for this problem.
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The idea: Dynamic programming

You’ve seen dynamic programming in year 1, but I’m assuming you have
forgotten almost all of it!

Step 1: Come up with an exponential-time recursive algorithm for your
problem by reducing it to multiple smaller versions of itself.

Step 2: Arrange things so that most of the calls of your recursive
algorithm are repeated, and use this to make it polynomial. (Hard!)

Step 3: Optionally, rewrite your algorithm as an iterative one. (Easier.)

Why call it “dynamic programming”?

Because Richard Bellman needed to sell it to an idiot politician and
“dynamic” was a fashionable word! If it had been invented today, it would
have been called “agile blockchain programming in the cloud”...
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Step 1: Reducing weighted interval scheduling to itself

Input: A set of intervals R and a weight function w : R→ Q≥0.
Output: A compatible set R′ ⊆ R of maximum weight

∑
R∈R′ w(R).

You can think of weighted interval scheduling as a sequence of choices: Do I
include this interval in my output, or not?

Our greedy algorithm decided “yes” or “no” based only on finishing times. But to
reduce a problem to itself, we consider the effect of each choice.

00 10 20 30 40 50 60

15

80

30 50

60

40

WIS(R \ {I}){I} ∪ WIS(R \ X I)Max weight!
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If we don’t include some interval I : Then the maximum-weight compatible set
will be the same as WIS(R \ {I}).
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If we do include some interval I : Then we can’t include any interval in the set
XI ⊆ R of intervals intersecting I , or we lose compatibility. But the maximum-
weight compatible set will be I together with WIS(R \ XI ).

John Lapinskas Weighted interval scheduling 5 / 1



Step 1: Reducing weighted interval scheduling to itself

Input: A set of intervals R and a weight function w : R→ Q≥0.
Output: A compatible set R′ ⊆ R of maximum weight

∑
R∈R′ w(R).

You can think of weighted interval scheduling as a sequence of choices: Do I
include this interval in my output, or not?

Our greedy algorithm decided “yes” or “no” based only on finishing times. But to
reduce a problem to itself, we consider the effect of each choice.

00 10 20 30 40 50 60

15

80

30 50

60

40

WIS(R \ {I}){I} ∪ WIS(R \ X I)Max weight!

So overall, the highest-weight compatible set will be either WIS(R\ {I}) or {I} ∪
WIS(R \ XI ), whichever has higher weight.

(See problem sheet 8 question 4 for more examples!)
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The full recursive algorithm

Algorithm: WIS

Input : An array R of n requests and a weight function w .
Output : A maximum-weight compatible subset of R.

1 begin
2 if R = ∅ then
3 Return ∅.

4 else
5 Choose I ∈ R arbitrarily.
6 Find the set XI of intervals in R incompatible with I .
7 Sout ←WIS(R \ {I},w).
8 Sin ← {I} ∪WIS(R \ XI ,w).
9 if w(Sout) > w(Sin) then
10 Return Sout.

11 else
12 Return Sin.

Note that this algorithm will work regardless of how we pick each I .

Next video, we will exploit this to make the algorithm run much faster...
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