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Reminder from COMS10007: The Fibonacci sequence

The Fibonacci sequence is given by

F (0) = 0; F (1) = 1; F (n) = F (n − 1) + F (n − 2) for n ≥ 2.

Trying to use this recurrence to calculate it directly takes Θ(ϕn) time:

F (5)

F (4) F (3)

F (3) F (2) F (2) F (1)

F (2) F (1) F (1) F (1) F (0)F (0)

F (1) F (0)

But if we remember the results of each F call, it takes only Θ(n) time!
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Reminder from COMS10007: Memoisation

We can do this literally, e.g. via static variables or a cache argument. This
is called memoization, and any language can do it. E.g. for Python:

Alternatively, and optionally, we can “unroll the recurrence” into an
iterative algorithm that fills out the cache from the bottom up:

0 1 -1 -1 -1 -1

Return cache[5].

Either way, we turn a Θ(ϕn)-time algorithm for calculating Fn into a
Θ(n)-time algorithm. This technique is called dynamic programming.
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Dynamic programming for weighted interval scheduling

In weighted interval scheduling, we have a slow recursive algorithm:

Pick an arbitrary interval I ;

Recursively find the best schedule containing I ;

Recursively find the best schedule not containing I ;

Return whichever is better.

But almost every recursive call will be different. Memoisation doesn’t help.

So we need to choose I in such a way as to make almost all the recursive
calls the same!

If our recursive algorithm is built around “try all possible options of a
choice”, like “is I in the schedule or not?” then one trick is to impose an
order on the choices so that each choice only has a “local” effect.

Here, if we take I to be the interval with the latest finish time, rather than
choosing it arbitrarily, things will work out nicely!
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Why “fastest-finishing” works fast

Key point: Say our intervals are R = {(s1, f1), . . . , (sn, fn)}, where
f1 ≤ · · · ≤ fn. Then the slowest-finishing interval (sn, fn) only overlaps with
intervals finishing later than sn.

So our recursive calls always take R = {(s1, f1), . . . , (si , fi )} for some i !
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Choosing I to be the fastest-starting interval works too — see quiz!
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(45, 60) not in schedule: Recurse on (5, 20), (20, 25), . . . , (15, 55).

Choosing I to be the fastest-starting interval works too — see quiz!
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(45, 60) is in schedule: Recurse on (5, 20), (20, 25), . . . , (25, 40).

Choosing I to be the fastest-starting interval works too — see quiz!
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The recursive (memoised) version

Algorithm: WIS

Input : A sorted array R of n requests and a weight function w .
Output : A maximum-weight compatible subset of R.

1 begin
2 Write R = (s1, f1), . . . , (sn, fn) with f1 ≤ · · · ≤ fn.
3 if R = ∅ then
4 Return ∅.

5 else if R is in cache then
6 Return cache[R].

7 else
8 Let X ← {(si , fi ) : fi > sn} be the set of intervals in R incompatible with (sn, fn).
9 Sout ←WIS(R \ {(sn, fn)},w).

10 Sin ← {I} ∪WIS(R \ ({(sn, fn)} ∪ X ),w).
11 if w(Sout) > w(Sin) then output← Sout, else output← Sin.
12 cache[R]← output.
13 Return output.

Here cache is a static dictionary. Any sensible implementation (e.g. a hash
table) will take O(log n) time or O(1) time per access. We can find X in
O(log n) time with binary search. So each call takes O(log n) time.
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13 Return output.

Each call takes O(log n) time, and there are O(n) total calls, for a total of
O(n log n) time. We also need to sort R before calling WIS for the first
time, which takes O(n log n) time.
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13 Return output.

So overall, the running time is O(n log n)!
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The iterative version

Algorithm: WIS

Input : An unsorted array R of n requests and a weight function w .
Output : A maximum-weight compatible subset of R.

1 begin
2 Sort R← (s1, f1), . . . , (sn, fn) with f1 ≤ · · · ≤ fn.
3 cache← [Null]× (n + 1).
4 cache[0]← ∅.
5 for i = 1 to n do
6 Let p(i)← max{{0} ∪ {1 ≤ j ≤ i − 1: fj ≤ si}}.
7 Sout ← cache[i − 1].
8 Sin ← cache[p(i)] ∪ {(si , fi )}.
9 if w(Sout) > w(Sin) then cache[i ]← Sout, else cache[i ]← Sin.

10 Return cache[n].

This algorithm is doing the same thing as the recursive algorithm, working
from the base case R = ∅ (corresponding to cache[0]) upwards.

Again, we can find p(i) in O(log n) time with binary search, so the overall
running time is O(n log n) — the same as the recursive version!
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10 Return cache[n].

It’s generally good practice to make your dynamic programming algorithms
iterative, since it often has lower constant overhead, and it can help you
identify more significant savings. (See video 11-4!) But it is not necessary.

Unless you already know it’s a performance bottleneck, do whichever you
find easiest — premature optimisation creates bugs!
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