Dynamic programming COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Reminder from COMS10007: The Fibonacci sequence

The Fibonacci sequence is given by

F(0) = 0; F(1) = 1; F(n) = F(n-1) + F(n-2) for $n \ge 2.$

Trying to use this recurrence to calculate it directly takes $\Theta(\phi^n)$ time:

Reminder from COMS10007: The Fibonacci sequence

The Fibonacci sequence is given by

F(0) = 0; F(1) = 1; F(n) = F(n-1) + F(n-2) for $n \ge 2.$

Trying to use this recurrence to calculate it directly takes $\Theta(\phi^n)$ time:

But if we remember the results of each F call, it takes only $\Theta(n)$ time!

John Lapinskas

We can do this literally, e.g. via static variables or a cache argument. This is called **memoization**, and any language can do it. E.g. for Python:

```
def fibonacci(n):
    if n in fibonacci.cache:
        return fibonacci.cache[n]
    fibonacci.cache[n] = fibonacci(n-1) + fibonacci(n-2)
    return fibonacci.cache[n]
fibonacci.cache = {0:0, 1:1}
```

Alternatively, and **optionally**, we can "unroll the recurrence" into an iterative algorithm that fills out the cache from the bottom up:

```
def fibonacci(n):
    cache = [0,1]+[-1]*(n-1)
    for i in range(2, n+1):
        cache[i] = cache[i-1] + cache[i-2]
    return cache[n]
```

We can do this literally, e.g. via static variables or a cache argument. This is called **memoization**, and any language can do it. E.g. for Python:

```
def fibonacci(n):
    if n in fibonacci.cache:
        return fibonacci.cache[n]
    fibonacci.cache[n] = fibonacci(n-1) + fibonacci(n-2)
    return fibonacci.cache[n]
fibonacci.cache = {0:0, 1:1}
```

Alternatively, and **optionally**, we can "unroll the recurrence" into an iterative algorithm that fills out the cache from the bottom up:

```
def fibonacci(n):
    cache = [0,1]+[-1]*(n-1)
    for i in range(2, n+1):
        cache[i] = cache[i-1] + cache[i-2]
    return cache[n]
```

We can do this literally, e.g. via static variables or a cache argument. This is called **memoization**, and any language can do it. E.g. for Python:

```
def fibonacci(n):
    if n in fibonacci.cache:
        return fibonacci.cache[n]
    fibonacci.cache[n] = fibonacci(n-1) + fibonacci(n-2)
    return fibonacci.cache[n]
fibonacci.cache = {0:0, 1:1}
```

Alternatively, and **optionally**, we can "unroll the recurrence" into an iterative algorithm that fills out the cache from the bottom up:

```
def fibonacci(n):
    cache = [0,1]+[-1]*(n-1)
    for i in range(2, n+1):
        cache[i] = cache[i-1] + cache[i-2]
    return cache[n]
```

We can do this literally, e.g. via static variables or a cache argument. This is called **memoization**, and any language can do it. E.g. for Python:

```
def fibonacci(n):
    if n in fibonacci.cache:
        return fibonacci.cache[n]
    fibonacci.cache[n] = fibonacci(n-1) + fibonacci(n-2)
    return fibonacci.cache[n]
fibonacci.cache = {0:0, 1:1}
```

Alternatively, and **optionally**, we can "unroll the recurrence" into an iterative algorithm that fills out the cache from the bottom up:

```
def fibonacci(n):
    cache = [0,1]+[-1]*(n-1)
    for i in range(2, n+1):
        cache[i] = cache[i-1] + cache[i-2]
    return cache[n]
```

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad \longleftarrow \quad \text{Return cache[5]}.$$

Either way, we turn a $\Theta(\phi^n)$ -time algorithm for calculating F_n into a $\Theta(n)$ -time algorithm. This technique is called **dynamic programming**.

Dynamic programming for weighted interval scheduling

In weighted interval scheduling, we have a slow recursive algorithm:

- Pick an arbitrary interval *I*;
- Recursively find the best schedule containing *I*;
- Recursively find the best schedule not containing *I*;
- Return whichever is better.

But almost every recursive call will be different. Memoisation doesn't help.

So we need to choose *I* in such a way as to **make** almost all the recursive calls the same!

If our recursive algorithm is built around "try all possible options of a choice", like "is *I* in the schedule or not?" then one trick is to impose an order on the choices so that each choice only has a "local" effect.

Here, if we take *I* to be the interval with the latest finish time, rather than choosing it arbitrarily, things will work out nicely!

Why "fastest-finishing" works fast

Key point: Say our intervals are $\mathcal{R} = \{(s_1, f_1), \dots, (s_n, f_n)\}$, where $f_1 \leq \dots \leq f_n$. Then the slowest-finishing interval (s_n, f_n) only overlaps with intervals finishing later than s_n .

So our recursive calls always take $\mathcal{R} = \{(s_1, f_1), \dots, (s_i, f_i)\}$ for some i!

Why "fastest-finishing" works fast

Key point: Say our intervals are $\mathcal{R} = \{(s_1, f_1), \ldots, (s_n, f_n)\}$, where $f_1 \leq \cdots \leq f_n$. Then the slowest-finishing interval (s_n, f_n) only overlaps with intervals finishing later than s_n .

So our recursive calls always take $\mathcal{R} = \{(s_1, f_1), \dots, (s_i, f_i)\}$ for some i!

(45, 60) not in schedule: Recurse on $(5, 20), (20, 25), \ldots, (15, 55)$.

Why "fastest-finishing" works fast

Key point: Say our intervals are $\mathcal{R} = \{(s_1, f_1), \ldots, (s_n, f_n)\}$, where $f_1 \leq \cdots \leq f_n$. Then the slowest-finishing interval (s_n, f_n) only overlaps with intervals finishing later than s_n .

So our recursive calls always take $\mathcal{R} = \{(s_1, f_1), \dots, (s_i, f_i)\}$ for some i!

(45, 60) is in schedule: Recurse on (5, 20), (20, 25), ..., (25, 40).Choosing *I* to be the fastest-starting interval works too — see quiz!

The recursive (memoised) version

Algorithm: WIS Input : A sorted array \mathcal{R} of *n* requests and a weight function *w*. Output : A maximum-weight compatible subset of \mathcal{R} . 1 begin Write $\mathcal{R} = (s_1, f_1), \ldots, (s_n, f_n)$ with $f_1 < \cdots < f_n$. 2 if $\mathcal{R} = \emptyset$ then 3 Return Ø. 4 else if \mathcal{R} is in cache then 5 Return cache $[\mathcal{R}]$. 6 else 7 Let $X \leftarrow \{(s_i, f_i) : f_i > s_n\}$ be the set of intervals in \mathcal{R} incompatible with (s_n, f_n) . 8 $S_{\text{out}} \leftarrow \text{WIS}(\mathcal{R} \setminus \{(s_n, f_n)\}, w).$ 9 $S_{in} \leftarrow \{I\} \cup WIS(\mathcal{R} \setminus (\{(s_n, f_n)\} \cup X), w).$ 10 if $w(S_{\text{out}}) > w(S_{\text{in}})$ then $\text{output} \leftarrow S_{\text{out}}$, else $\text{output} \leftarrow S_{\text{in}}$. 11 $cache[\mathcal{R}] \leftarrow output.$ 12 Return output. 13

Here cache is a static dictionary. Any sensible implementation (e.g. a hash table) will take $O(\log n)$ time or O(1) time per access. We can find X in $O(\log n)$ time with binary search. So each call takes $O(\log n)$ time.

The recursive (memoised) version

Algorithm: WIS : A sorted array \mathcal{R} of *n* requests and a weight function *w*. Input Output : A maximum-weight compatible subset of \mathcal{R} . 1 begin Write $\mathcal{R} = (s_1, f_1), \ldots, (s_n, f_n)$ with $f_1 \leq \cdots \leq f_n$. 2 if $\mathcal{R} = \emptyset$ then 3 Return Ø. 4 else if \mathcal{R} is in cache then 5 Return cache $[\mathcal{R}]$. 6 else 7 Let $X \leftarrow \{(s_i, f_i) : f_i > s_n\}$ be the set of intervals in \mathcal{R} incompatible with (s_n, f_n) . 8 $S_{\text{out}} \leftarrow \text{WIS}(\mathcal{R} \setminus \{(s_n, f_n)\}, w).$ 9 $S_{in} \leftarrow \{I\} \cup WIS(\mathcal{R} \setminus (\{(s_n, f_n)\} \cup X), w).$ 10 if $w(S_{\text{out}}) > w(S_{\text{in}})$ then $\text{output} \leftarrow S_{\text{out}}$, else $\text{output} \leftarrow S_{\text{in}}$. 11 $cache[\mathcal{R}] \leftarrow output.$ 12 Return output. 13

Each call takes $O(\log n)$ time, and there are O(n) total calls, for a total of $O(n \log n)$ time. We also need to sort \mathcal{R} before calling WIS for the first time, which takes $O(n \log n)$ time.

John Lapinskas

The recursive (memoised) version

Algorithm: WIS : A sorted array \mathcal{R} of *n* requests and a weight function *w*. Input Output : A maximum-weight compatible subset of \mathcal{R} . 1 begin Write $\mathcal{R} = (s_1, f_1), \ldots, (s_n, f_n)$ with $f_1 < \cdots < f_n$. 2 if $\mathcal{R} = \emptyset$ then 3 Return Ø. 4 else if \mathcal{R} is in cache then 5 Return cache $[\mathcal{R}]$. 6 else 7 Let $X \leftarrow \{(s_i, f_i) : f_i > s_n\}$ be the set of intervals in \mathcal{R} incompatible with (s_n, f_n) . 8 $S_{\text{out}} \leftarrow \text{WIS}(\mathcal{R} \setminus \{(s_n, f_n)\}, w).$ 9 $S_{in} \leftarrow \{I\} \cup WIS(\mathcal{R} \setminus (\{(s_n, f_n)\} \cup X), w).$ 10 if $w(S_{\text{out}}) > w(S_{\text{in}})$ then $\text{output} \leftarrow S_{\text{out}}$, else $\text{output} \leftarrow S_{\text{in}}$. 11 $cache[\mathcal{R}] \leftarrow output.$ 12 Return output. 13

So overall, the running time is $O(n \log n)!$

The iterative version

	Algorithm: WIS
	Input : An unsorted array \mathcal{R} of <i>n</i> requests and a weight function <i>w</i> .
	Output : A maximum-weight compatible subset of \mathcal{R} .
1	begin
2	Sort $\mathcal{R} \leftarrow (s_1, f_1), \ldots, (s_n, f_n)$ with $f_1 \leq \cdots \leq f_n$.
3	$ ext{cache} \leftarrow [ext{Null}] imes (n+1).$
4	$cache[0] \leftarrow \emptyset.$
5	for $i = 1$ to n do
6	Let $p(i) \leftarrow \max\{\{0\} \cup \{1 \le j \le i-1 \colon f_j \le s_i\}\}.$
7	$S_{ ext{out}} \leftarrow ext{cache}[i-1].$
8	$S_{\text{in}} \leftarrow \texttt{cache}[p(i)] \cup \{(s_i, f_i)\}.$
9	if $w(S_{\mathrm{out}}) > w(S_{\mathrm{in}})$ then $\mathrm{cache}[i] \leftarrow S_{\mathrm{out}}$, else $\mathrm{cache}[i] \leftarrow S_{\mathrm{in}}$.
10	Return cache[n].

This algorithm is doing the same thing as the recursive algorithm, working from the base case $\mathcal{R} = \emptyset$ (corresponding to cache[0]) upwards.

Again, we can find p(i) in $O(\log n)$ time with binary search, so the overall running time is $O(n \log n)$ — the same as the recursive version!

The iterative version

	Algorithm: WIS
	Input : An unsorted array \mathcal{R} of <i>n</i> requests and a weight function <i>w</i> .
	Output : A maximum-weight compatible subset of \mathcal{R} .
1	begin
2	Sort $\mathcal{R} \leftarrow (s_1, f_1), \ldots, (s_n, f_n)$ with $f_1 \leq \cdots \leq f_n$.
3	$ ext{cache} \leftarrow [ext{Null}] imes (n+1).$
4	$cache[0] \leftarrow \emptyset.$
5	for $i = 1$ to n do
6	Let $p(i) \leftarrow \max\{\{0\} \cup \{1 \le j \le i-1 : f_j \le s_i\}\}$.
7	$S_{ ext{out}} \leftarrow ext{cache}[i-1].$
8	$S_{in} \leftarrow \operatorname{cache}[p(i)] \cup \{(s_i, f_i)\}.$
9	if $w(S_{\mathrm{out}}) > w(S_{\mathrm{in}})$ then $\mathtt{cache}[i] \leftarrow S_{\mathrm{out}}$, else $\mathtt{cache}[i] \leftarrow S_{\mathrm{in}}$.
10	Return cache[n].

It's generally good practice to make your dynamic programming algorithms iterative, since it often has lower constant overhead, and it can help you identify more significant savings. (See video 11-4!) But it is **not** necessary.

Unless you already know it's a performance bottleneck, do whichever you find easiest — premature optimisation creates bugs!