The Bellman-Ford algorithm COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Shortest paths with negative-weight edges

The length of a path/walk $P = x_1 \dots x_t$ is the total weight $\sum_{i=1}^{t-1} w(x_i, x_{i+1})$ of P's edges.

The distance from x to y is the shortest length of any path/walk from x to y, or ∞ if they are in different components.

We touched on negative-weight edges when we covered Dijkstra's algorithm in week 4, but now we can actually solve the problem.

We assume every cycle in the graph has non-negative total weight — this guarantees that a shortest walk from one vertex to another exists, and is a path. Otherwise, it often doesn't exist!

Here there is no shortest walk from v_1 to v_5 , since we can keep repeating the cycle $v_2v_3v_4$ to send the length of the walk off to $-\infty$...

Dijkstra's algorithm relies on the assumption that the best route out of a set X of vertices is determined by the graph's structure in and near X. With negative weights, this fails.

Since (x, y) has lower weight than (x, z), Dijkstra's algorithm run from x finalises d(x, y) = 1 as its first step even though d(x, y) = -5. It can't "see" the weight-(-7) edge when it's finalising the distance of y.

A dynamic programming approach

Step 1: Find a slow algorithm by reducing the problem to itself.

Original problem: Given a weighted digraph *G* with no negative-weight cycles and vertices $s, t \in V(G)$, find a shortest path from *s* to *t*.

Remember, when a solution is composed of lots of separate choices, a good way of going about this is often to consider the results of each choice.

Here, a good first choice is: which edge do we take out of s?

Any shortest path must be an edge from s to some $v \in N^+(s)$, followed by a shortest path from v to t in G - s.

John Lapinskas

Α	Algorithm: BadPath
h	nput : A weighted digraph $G = ((V, E), w)$ with no negative-weight cycles, and two vertices $s, t \in V(G)$.
C	Dutput : A shortest path from s to t in G , or None if none exists.
1 b	egin
2	if $s = t$ then
3	Return the empty path.
4	if $d^+(s) = 0$ then
5	Return None.
6	Write $N^+(s) = \{v_1,, v_d\}$, where $d \ge 1$.
7	Let $P_i \leftarrow \text{BADPATH}(G - s, v_i, t)$ for all $i \in [d]$.
8	if $P_i = \text{None for all } i \in [d]$ then
9	Return None.
10	Return whichever path is shortest in $\{sv_iP_i: i \in [d], P_i \neq None\}$.

How many possible calls are there to BADPATH? If the input graph is a clique, there are $\Theta(|V|2^{|V|}) - G$ could be any of the $2^{|V|}$ induced subgraphs, and s could be any of the |V| vertices!

So we can't just memoise this — we need to consolidate the calls.

We can get around this by using two common tricks in dynamic programming: **reframing the problem** and **adding a parameter**.

Instead of asking for a shortest **path** from s to t in G, we will ask for a shortest **walk** from s to t in G with at most |V(G)| - 1 edges.

Remember, when there are no negative-weight cycles, the shortest walk will be a path, and all paths have length at most |V(G)| - 1! So we're still asking for the same thing.

But the new formulation gives a much better recursive algorithm.

Most of dynamic programming is "cookie-cutter". It's not easy to learn, but once you know how, it's the same method for every problem. This is the part that can be arbitrarily difficult and only comes with practice.

A decent algorithm

Algorithm:	GoodPath
------------	----------

h	nput : A weighted digraph $G = ((V, E), w)$ with no negative-weight cycles, two vertices
	$s, t \in V(G)$, and an integer $k \geq 0$.
C	Dutput : A shortest walk from s to t in G with at most k edges, or None if none exists.
1 b	egin
2	if $s = t$ then
3	Return the empty walk.
4	else if $k = 0$ then
5	Return None.
6	Write $N^+(s) = \{v_1,, v_d\}$, where $d \ge 1$.
7	Let $P_i \leftarrow \text{GOODPATH}(G, v_i, t, k - 1)$ for all $i \in [d]$.
8	if $P_i = \text{None for all } i \in [d]$ then
9	Return None.
10	Return whichever walk is shortest in $\{sv_iP_i: i \in [d], P_i \neq None\}$.

How many distinct calls are there in GOODPATH (G, s, t, |V| - 1)?

Only $|V|^2$! (One per possible (k, s) pair, since G and t stay the same between calls.) Each call takes O(|V|) time, so if we memoise, the algorithm runs in total time $O(|V|^3)$. And as a bonus, we can get d(v, t) for all $v \in V$ for free.