The Bellman-Ford algorithm COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Shortest paths with negative-weight edges

The length of a path/walk $P=x_{1} \ldots x_{t}$ is the total weight $\sum_{i=1}^{t-1} w\left(x_{i}, x_{i+1}\right)$ of P^{\prime} 's edges.
The distance from x to y is the shortest length of any path/walk from x to y, or ∞ if they are in different components.

We touched on negative-weight edges when we covered Dijkstra's algorithm in week 4, but now we can actually solve the problem.

We assume every cycle in the graph has non-negative total weight - this guarantees that a shortest walk from one vertex to another exists, and is a path. Otherwise, it often doesn't exist!

Here there is no shortest walk from v_{1} to v_{5}, since we can keep repeating the cycle $v_{2} v_{3} v_{4}$ to send the length of the walk off to $-\infty \ldots$

What goes wrong with Dijkstra?

Dijkstra's algorithm relies on the assumption that the best route out of a set X of vertices is determined by the graph's structure in and near X. With negative weights, this fails.

Since (x, y) has lower weight than (x, z), Dijkstra's algorithm run from x finalises $d(x, y)=1$ as its first step even though $d(x, y)=-5$. It can't "see" the weight-(-7) edge when it's finalising the distance of y.

A dynamic programming approach

Step 1: Find a slow algorithm by reducing the problem to itself.
Original problem: Given a weighted digraph G with no negative-weight cycles and vertices $s, t \in V(G)$, find a shortest path from s to t.

Remember, when a solution is composed of lots of separate choices, a good way of going about this is often to consider the results of each choice.

Here, a good first choice is: which edge do we take out of s ?

Any shortest path must be an edge from s to some $v \in N^{+}(s)$, followed by a shortest path from v to t in $G-s$.

The slow recursive algorithm

```
Algorithm: BadPath
Input : A weighted digraph \(G=((V, E), w)\) with no negative-weight cycles, and two
                        vertices \(s, t \in V(G)\).
Output : A shortest path from \(s\) to \(t\) in \(G\), or None if none exists.
1 begin
    if \(s=t\) then
        Return the empty path.
    if \(d^{+}(s)=0\) then
        Return None.
    Write \(N^{+}(s)=\left\{v_{1}, \ldots, v_{d}\right\}\), where \(d \geq 1\).
    Let \(P_{i} \leftarrow \operatorname{BadPath}\left(G-s, v_{i}, t\right)\) for all \(i \in[d]\).
    if \(P_{i}=\) None for all \(i \in[d]\) then
        Return None.
Return whichever path is shortest in \(\left\{s v_{i} P_{i}: i \in[d], P_{i} \neq\right.\) None \(\}\).
```

How many possible calls are there to BadPath? If the input graph is a clique, there are $\Theta\left(|V| 2^{|V|}\right)-G$ could be any of the $2^{|V|}$ induced subgraphs, and s could be any of the $|V|$ vertices!

So we can't just memoise this - we need to consolidate the calls.

The hard part: consolidating calls!

We can get around this by using two common tricks in dynamic programming: reframing the problem and adding a parameter.

Instead of asking for a shortest path from s to t in G, we will ask for a shortest walk from s to t in G with at most $|\boldsymbol{V}(\boldsymbol{G})|-\mathbf{1}$ edges.

Remember, when there are no negative-weight cycles, the shortest walk will be a path, and all paths have length at most $|V(G)|-1$! So we're still asking for the same thing.

But the new formulation gives a much better recursive algorithm.
Most of dynamic programming is "cookie-cutter". It's not easy to learn, but once you know how, it's the same method for every problem. This is the part that can be arbitrarily difficult and only comes with practice.

A decent algorithm

```
Algorithm: GoodPath
Input : A weighted digraph \(G=((V, E), w)\) with no negative-weight cycles, two vertices
    \(s, t \in V(G)\), and an integer \(k \geq 0\).
Output : A shortest walk from \(s\) to \(t\) in \(G\) with at most \(k\) edges, or None if none exists.
begin
    if \(s=t\) then
        L Return the empty walk.
    else if \(k=0\) then
        Return None.
    Write \(N^{+}(s)=\left\{v_{1}, \ldots, v_{d}\right\}\), where \(d \geq 1\).
    Let \(P_{i} \leftarrow \operatorname{GoodPath}\left(G, v_{i}, t, k-1\right)\) for all \(i \in[d]\).
    if \(P_{i}=\) None for all \(i \in[d]\) then
        Return None.
    Return whichever walk is shortest in \(\left\{s v_{i} P_{i}: i \in[d], P_{i} \neq\right.\) None \(\}\).
```

How many distinct calls are there in $\operatorname{GoodPath}(G, s, t,|V|-1)$?
Only $|V|^{2}$! (One per possible (k, s) pair, since G and t stay the same between calls.)
Each call takes $O(|V|)$ time, so if we memoise, the algorithm runs in total time $O\left(|V|^{3}\right)$. And as a bonus, we can get $d(v, t)$ for all $v \in V$ for free.

