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Shortest paths with negative-weight edges

The length of a path/walk P = x1 . . . xt is the total weight
∑t−1

i=1 w(xi , xi+1) of P’s edges.

The distance from x to y is the shortest length of any path/walk from x to y , or ∞ if they are
in different components.

We touched on negative-weight edges when we covered Dijkstra’s
algorithm in week 4, but now we can actually solve the problem.

We assume every cycle in the graph has non-negative total weight — this
guarantees that a shortest walk from one vertex to another exists, and is a
path. Otherwise, it often doesn’t exist!
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v1 v2 v3 v4 v5

Here there is no shortest walk from v1 to v5, since we can keep repeating
the cycle v2v3v4 to send the length of the walk off to −∞...
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What goes wrong with Dijkstra?

Dijkstra’s algorithm relies on the assumption that the best route out of a
set X of vertices is determined by the graph’s structure in and near X .
With negative weights, this fails.
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Since (x , y) has lower weight than (x , z), Dijkstra’s algorithm run from x
finalises d(x , y) = 1 as its first step even though d(x , y) = −5. It can’t
“see” the weight-(−7) edge when it’s finalising the distance of y .
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A dynamic programming approach

Step 1: Find a slow algorithm by reducing the problem to itself.

Original problem: Given a weighted digraph G with no negative-weight
cycles and vertices s, t ∈ V (G ), find a shortest path from s to t.

Remember, when a solution is composed of lots of separate choices, a good
way of going about this is often to consider the results of each choice.

Here, a good first choice is: which edge do we take out of s?
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Any shortest path must be an edge from s to some v ∈ N+(s), followed
by a shortest path from v to t in G − s.
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The slow recursive algorithm

Algorithm: BadPath

Input : A weighted digraph G = ((V ,E),w) with no negative-weight cycles, and two
vertices s, t ∈ V (G).

Output : A shortest path from s to t in G , or None if none exists.
1 begin
2 if s = t then
3 Return the empty path.

4 if d+(s) = 0 then
5 Return None.

6 Write N+(s) = {v1, . . . , vd}, where d ≥ 1.
7 Let Pi ← BadPath(G − s, vi , t) for all i ∈ [d ].
8 if Pi = None for all i ∈ [d ] then
9 Return None.

10 Return whichever path is shortest in {sviPi : i ∈ [d ],Pi ̸= None}.

How many possible calls are there to BadPath?

If the input graph is a
clique, there are Θ(|V |2|V |) — G could be any of the 2|V | induced
subgraphs, and s could be any of the |V | vertices!

So we can’t just memoise this — we need to consolidate the calls.
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The hard part: consolidating calls!

We can get around this by using two common tricks in dynamic
programming: reframing the problem and adding a parameter.

Instead of asking for a shortest path from s to t in G , we will ask for a
shortest walk from s to t in G with at most |V (G)| − 1 edges.

Remember, when there are no negative-weight cycles, the shortest walk
will be a path, and all paths have length at most |V (G )| − 1! So we’re still
asking for the same thing.

But the new formulation gives a much better recursive algorithm.

Most of dynamic programming is “cookie-cutter”. It’s not easy to learn,
but once you know how, it’s the same method for every problem. This is
the part that can be arbitrarily difficult and only comes with practice.

John Lapinskas The Bellman-Ford algorithm 6 / 7



The hard part: consolidating calls!

We can get around this by using two common tricks in dynamic
programming: reframing the problem and adding a parameter.

Instead of asking for a shortest path from s to t in G , we will ask for a
shortest walk from s to t in G with at most |V (G)| − 1 edges.

Remember, when there are no negative-weight cycles, the shortest walk
will be a path, and all paths have length at most |V (G )| − 1! So we’re still
asking for the same thing.

But the new formulation gives a much better recursive algorithm.

Most of dynamic programming is “cookie-cutter”. It’s not easy to learn,
but once you know how, it’s the same method for every problem. This is
the part that can be arbitrarily difficult and only comes with practice.

John Lapinskas The Bellman-Ford algorithm 6 / 7



The hard part: consolidating calls!

We can get around this by using two common tricks in dynamic
programming: reframing the problem and adding a parameter.

Instead of asking for a shortest path from s to t in G , we will ask for a
shortest walk from s to t in G with at most |V (G)| − 1 edges.

Remember, when there are no negative-weight cycles, the shortest walk
will be a path, and all paths have length at most |V (G )| − 1! So we’re still
asking for the same thing.

But the new formulation gives a much better recursive algorithm.

Most of dynamic programming is “cookie-cutter”. It’s not easy to learn,
but once you know how, it’s the same method for every problem. This is
the part that can be arbitrarily difficult and only comes with practice.

John Lapinskas The Bellman-Ford algorithm 6 / 7



A decent algorithm

Algorithm: GoodPath

Input : A weighted digraph G = ((V ,E),w) with no negative-weight cycles, two vertices
s, t ∈ V (G), and an integer k ≥ 0.

Output : A shortest walk from s to t in G with at most k edges, or None if none exists.
1 begin
2 if s = t then
3 Return the empty walk.

4 else if k = 0 then
5 Return None.

6 Write N+(s) = {v1, . . . , vd}, where d ≥ 1.
7 Let Pi ← GoodPath(G , vi , t, k − 1) for all i ∈ [d ].
8 if Pi = None for all i ∈ [d ] then
9 Return None.

10 Return whichever walk is shortest in {sviPi : i ∈ [d ],Pi ̸= None}.

How many distinct calls are there in GoodPath(G , s, t, |V | − 1)?

Only |V |2! (One per possible (k, s) pair, since G and t stay the same between calls.)

Each call takes O(|V |) time, so if we memoise, the algorithm runs in total time O(|V |3).
And as a bonus, we can get d(v , t) for all v ∈ V for free.
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