The real Bellman-Ford algorithm COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Bellman-Ford: A reminder

```
Algorithm: GoodPath
Input : A weighted digraph \(G=((V, E), w)\) with no negative-weight cycles, two vertices
    \(s, t \in V(G)\), and an integer \(k \geq 0\).
Output : A shortest walk from \(s\) to \(t\) in \(G\) with at most \(k\) edges, or None if none exists.
begin
    if \(k=0\) then
        Return the empty walk if \(s=t\), and None otherwise.
    Write \(N^{+}(s)=\left\{v_{1}, \ldots, v_{d}\right\}\), where \(d \geq 1\).
    Let \(P_{i} \leftarrow \operatorname{GoodPath}\left(G, v_{i}, t, k-1\right)\) for all \(i \in[k]\).
    if \(P_{i}=\) None for all \(i \in[k]\) then
            Return None.
    Return whichever walk is shortest in \(\left\{s v_{i} P_{i}: i \in[k], P_{i} \neq\right.\) None \(\}\).
```

Memoised, this takes $O\left(|V|^{3}\right)$ time and space, since we need to store the result of $\Omega\left(|V|^{2}\right)$ function calls.
By making the algorithm iterative and being a little smarter, we can drop this to $O(|V||E|)$ time and $O(|V|)$ space. This is why it's often a good idea to de-memoise!

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

| k | u | v | w | x | y | z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | | | | | | |
| 4 | | | | | | |
| 3 | | | | | | |
| 2 | | | | | | |
| 1 | | | | | | |
| 0 | | | | | | |

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

\grave{s}	u	v	w	x	y	z
5						
4						
3						
2						
1						
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2						
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

\grave{s}	u	v	w	x	y	z
5						
4						
3						
2						
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2						
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

$k s$	u	v	w	x	y	z
5						
4						
3						
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

k	u	v	w	x	y	z
5						
4						
3	$u x y z$	$v x y z w x y z$	$x y z$	$y z$	z	
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

Iterative Bellman-Ford: An example

Say we are trying to find shortest paths from every vertex to z.

k	u	v	w	x	y	z
5						
4						
3	$u x y z$	$v x y z w x y z$	$x y z$	$y z$	z	
2	\emptyset	$v w z$	$w z$	$x y z$	$y z$	z
1	\emptyset	\emptyset	$w z$	\emptyset	$y z$	z
0	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	z

This is getting ugly. These paths are taking up a lot of space, and we need to recalculate their lengths each time.

Why not just store the first edge of each path, along with its length?

Iterative Bellman-Ford: A better approach

So e.g. $d(u, z)=8$, via the path $u v w x y z$.

Iterative Bellman-Ford: A better approach

So e.g. $d(u, z)=8$, via the path $u v w x y z$.
We only actually use the $k=0$ row of the table in calculating the $k=1$ row, which we only use in calculating the $k=2$ row...

Iterative Bellman-Ford: A better approach

So e.g. $d(u, z)=8$, via the path $u v w x y z$.
We only actually use the $k=0$ row of the table in calculating the $k=1$ row, which we only use in calculating the $k=2$ row...

Let's free the memory after we're done with it. Now we use $O(|V|)$ space!

Iterative Bellman-Ford: A better approach

So e.g. $d(u, z)=8$, via the path $u v w x y z$.
We can be even more cunning, and store only the current row.
So when we try and retrieve the value from our table for $s=v, k=3$ (say), we might get the value for $s=v, k=4$ instead if we already updated it. But this is OK - in fact, it means we sometimes find shorter paths faster!

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Initialise at $k=0$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=1$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=2$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=3$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=4$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Update to $k=5$.

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Iterative Bellman-Ford: An even better approach

Here's what this looks like in practice:

Now let's put this in pseudocode...

The real Bellman-Ford algorithm

```
Algorithm: BellmanFord
Input : A weighted digraph \(G=((V, E), w)\) with no negative-weight cycles and vertices
    \(s, t \in V(G)\).
Output : A shortest path from \(s\) to \(t\), or None if none exists.
1 begin
\(2 \quad\) Let dist \([v] \leftarrow \infty\) for all \(v \in V \backslash t\), dist \([t] \leftarrow 0\).
Let edge \([v] \leftarrow\) None for all \(v \in V\).
for \(i=1\) to \(|V|-1\) do
for \(u\) in \(V\) do
for \(v\) in \(N^{+}(u)\) do
if \(\operatorname{dist}[u]>w(u, v)+\operatorname{dist}[v]\) then
                                    \(\operatorname{dist}[u] \leftarrow w(u, v)+\operatorname{dist}[v]\) and edge \([u] \leftarrow(u, v)\).
    \(v \leftarrow s\). while \(v \neq t\) do
        If edge[ \(v\) ] = None, return None.
            Else writing edge \([v]=(v, w)\), output \((v, w)\) and set \(v \leftarrow w\).
```

3
4
5
6
7
8

This now takes $O\left(|V| \sum_{u \in V} d^{+}(u)\right)=O(|V||E|)$ time, by the handshaking lemma, and $O(|V|)$ space. Using edge, you can also output every other shortest path to t in $O\left(|V|^{2}\right)$ time.

Other useful pathfinding algorithms

Bellman-Ford as described gives you all shortest paths to a sink.
You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

Other useful pathfinding algorithms

Bellman-Ford as described gives you all shortest paths to a sink.
You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from all sources to all sinks, though?

Other useful pathfinding algorithms

Bellman-Ford as described gives you all shortest paths to a sink.
You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from all sources to all sinks, though? Repeatedly applying Dijkstra gives you $O(|V||E| \log |V|)$ time for non-negative edge weights.

You can match this running time even with negative edge weights using Johnson's algorithm.

Other useful pathfinding algorithms

Bellman-Ford as described gives you all shortest paths to a sink.
You can also adapt it to give you all shortest paths from a source, like Dijkstra. (See problem sheet.)

What if you want shortest paths from all sources to all sinks, though? Repeatedly applying Dijkstra gives you $O(|V||E| \log |V|)$ time for non-negative edge weights.

You can match this running time even with negative edge weights using Johnson's algorithm.

Also, a lot of the time you're not working blind - you have some idea of "which direction is best", e.g. if you're pathfinding in a video game. In this case you should use a heuristic-guided algorithm like \mathbf{A}^{*} search, which often runs much faster than Dijkstra or Bellman-Ford.

