
Greedy algorithms and interval scheduling
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Greedy algos + interval scheduling 1 / 10



Satellite scheduling

Suppose you’re running a satellite imaging service.

Taking a satellite picture of an area isn’t instant — it takes time
proportional to its latitude, and it can only be done at a specific time of
day (when your satellite’s orbit is lined up correctly).

You have a set of requested images, each of which can only be taken at
specific times, and you can only take one picture at once.

How can you satisfy as many requests as possible?

John Lapinskas Greedy algos + interval scheduling 2 / 10



Satellite scheduling: An example

Requested satellite times: 12:00–12:30, 12:05–12:20, 12:15–12:55,
12:20-12:25, 12:25–12:40, 12:38–12:50, and 12:45-13:00.

12:00 12:10 12:20 12:30 12:40 12:50 13:00

Here, we can satisfy four requests.

We might as well give our times integer labels for simplicity, though.

John Lapinskas Greedy algos + interval scheduling 3 / 10



Satellite scheduling: An example

Requested satellite times: 12:10–12:30, 12:05–12:20, 12:15–12:55,
12:20-12:25, 12:25–12:40, 12:38–12:50, and 12:45-13:00.

12:00 12:10 12:20 12:30 12:40 12:50 13:00

Here, we can satisfy four requests.

We might as well give our times integer labels for simplicity, though.

John Lapinskas Greedy algos + interval scheduling 3 / 10



Satellite scheduling: An example

Requested satellite times: 12:10–12:30, 12:05–12:20, 12:15–12:55,
12:20-12:25, 12:25–12:40, 12:38–12:50, and 12:45-13:00.

12:00 12:10 12:20 12:30 12:40 12:50 13:00

Here, we can satisfy four requests.

We might as well give our times integer labels for simplicity, though.

John Lapinskas Greedy algos + interval scheduling 3 / 10



Satellite scheduling: An example

Requested satellite times: 0–30, 5–20, 15–55, 20–25, 25–40, 38–50,
and 45-60.

00 10 20 30 40 50 60

Here, we can satisfy four requests.

We might as well give our times integer labels for simplicity, though.

John Lapinskas Greedy algos + interval scheduling 3 / 10



Interval scheduling: a formal definition

A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
We call s the start time and f the finish time.

A set A of requests is compatible if for all distinct (s, f ), (s ′, f ′) ∈ A,
either s ′ ≥ f or s ≥ f ′ — that is, the requests’ time intervals don’t overlap.

✓

s f s ′ f ′

✓ ✗

Interval Scheduling Problem
Input: An array R of n requests (s1, f1), . . . , (sn, fn).
Desired Output: A compatible subset of R of maximum possible size.

Our satellite problem above is an example of this — the maximum
compatible subset is the list of image requests we accept.

John Lapinskas Greedy algos + interval scheduling 4 / 10



Interval scheduling: a formal definition

A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
We call s the start time and f the finish time.

A set A of requests is compatible if for all distinct (s, f ), (s ′, f ′) ∈ A,
either s ′ ≥ f or s ≥ f ′ — that is, the requests’ time intervals don’t overlap.

✓

s f s ′ f ′

✓ ✗

Interval Scheduling Problem
Input: An array R of n requests (s1, f1), . . . , (sn, fn).
Desired Output: A compatible subset of R of maximum possible size.

Our satellite problem above is an example of this — the maximum
compatible subset is the list of image requests we accept.

John Lapinskas Greedy algos + interval scheduling 4 / 10



Solving interval scheduling

A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Input: An array R of n requests (s1, f1), . . . , (sn, fn).
Desired Output: A compatible subset of R of maximum possible size.

Idea: Use a greedy approach: start with an empty output and slowly build
it up, making choices that look good in the moment, without worrying
about future implications. These algorithms are very common and useful!

Heuristic: Tie up the satellite for as little time as possible before the next
request. So at each stage, we accept the request which finishes earliest
(out of those we haven’t already missed the start time for).

John Lapinskas Greedy algos + interval scheduling 5 / 10



Solving interval scheduling

A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Input: An array R of n requests (s1, f1), . . . , (sn, fn).
Desired Output: A compatible subset of R of maximum possible size.

Idea: Use a greedy approach: start with an empty output and slowly build
it up, making choices that look good in the moment, without worrying
about future implications. These algorithms are very common and useful!

Heuristic: Tie up the satellite for as little time as possible before the next
request. So at each stage, we accept the request which finishes earliest
(out of those we haven’t already missed the start time for).

John Lapinskas Greedy algos + interval scheduling 5 / 10



Solving interval scheduling

A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Input: An array R of n requests (s1, f1), . . . , (sn, fn).
Desired Output: A compatible subset of R of maximum possible size.

Idea: Use a greedy approach: start with an empty output and slowly build
it up, making choices that look good in the moment, without worrying
about future implications. These algorithms are very common and useful!

Heuristic: Tie up the satellite for as little time as possible before the next
request. So at each stage, we accept the request which finishes earliest
(out of those we haven’t already missed the start time for).

John Lapinskas Greedy algos + interval scheduling 5 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



A request is a pair of integers (s, f ) with 0 ≤ s ≤ f .
A set A of requests is compatible if for all distinct (s, f ), (s′, f ′) ∈ A, either s′ ≥ f or s ≥ f ′ —
that is, the requests’ time intervals don’t overlap.

Heuristic: Tie up the satellite for as little time as possible before the next request. So at each
stage, we accept the request which finishes earliest (out of those we haven’t already missed the
start time for).

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 6 / 10



Algorithm: GreedySchedule

Input: An array R of n requests.
Output: A maximum compatible subset of R.

1 begin
2 Sort R’s entries so that R ← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [ ], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi ) to A and update lastf← fi .

7 Return A.

Time analysis:
Step 2 takes O(n log n) time, as covered exhaustively in COMS10007.
Steps 3–6 all take O(1) time and are executed at most n times.
So overall the running time is O(n log n) + O(n) · O(1) = O(n log n). ✓

Proof of correctness: Next video!

John Lapinskas Greedy algos + interval scheduling 7 / 10



Algorithm: GreedySchedule

Input: An array R of n requests.
Output: A maximum compatible subset of R.

1 begin
2 Sort R’s entries so that R ← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [ ], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi ) to A and update lastf← fi .

7 Return A.

Time analysis:
Step 2 takes O(n log n) time, as covered exhaustively in COMS10007.

Steps 3–6 all take O(1) time and are executed at most n times.
So overall the running time is O(n log n) + O(n) · O(1) = O(n log n). ✓

Proof of correctness: Next video!

John Lapinskas Greedy algos + interval scheduling 7 / 10



Algorithm: GreedySchedule

Input: An array R of n requests.
Output: A maximum compatible subset of R.

1 begin
2 Sort R’s entries so that R ← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [ ], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi ) to A and update lastf← fi .

7 Return A.

Time analysis:
Step 2 takes O(n log n) time, as covered exhaustively in COMS10007.
Steps 3–6 all take O(1) time and are executed at most n times.

So overall the running time is O(n log n) + O(n) · O(1) = O(n log n). ✓

Proof of correctness: Next video!

John Lapinskas Greedy algos + interval scheduling 7 / 10



Algorithm: GreedySchedule

Input: An array R of n requests.
Output: A maximum compatible subset of R.

1 begin
2 Sort R’s entries so that R ← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [ ], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi ) to A and update lastf← fi .

7 Return A.

Time analysis:
Step 2 takes O(n log n) time, as covered exhaustively in COMS10007.
Steps 3–6 all take O(1) time and are executed at most n times.
So overall the running time is O(n log n) + O(n) · O(1) = O(n log n). ✓

Proof of correctness: Next video!

John Lapinskas Greedy algos + interval scheduling 7 / 10



Algorithm: GreedySchedule

Input: An array R of n requests.
Output: A maximum compatible subset of R.

1 begin
2 Sort R’s entries so that R ← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [ ], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi ) to A and update lastf← fi .

7 Return A.

Time analysis:
Step 2 takes O(n log n) time, as covered exhaustively in COMS10007.
Steps 3–6 all take O(1) time and are executed at most n times.
So overall the running time is O(n log n) + O(n) · O(1) = O(n log n). ✓

Proof of correctness: Next video!

John Lapinskas Greedy algos + interval scheduling 7 / 10



Greedy algorithms in general

Greedy algorithm is a very informal term, and different people have
incompatible definitions. My definition (see e.g. KT’s book) is:

they start with a sub-optimal (often trivial) solution, e.g. A = [ ], and
gradually turn it into the output.

they look over all possible improvements and pick the one that “looks
best at the time”, e.g. adding the fastest-ending compatible request.

they never backtrack in “quality”, e.g. the size of A never goes down.

Some people (see e.g. CLRS’ book) have stricter definitions.
But this will never actually matter to you!

What matters is being able to use and design algorithms like this one.

John Lapinskas Greedy algos + interval scheduling 8 / 10



Greed is... not always good?

Sometimes the locally-optimal choices are the ones we regret the most...

John Lapinskas Greedy algos + interval scheduling 9 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

E.g. what if instead of choosing the fastest-finishing request to add at each
stage, we chose the fastest-starting request?

00 10 20 30 40 50 60

It doesn’t work!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10



Greedy algorithms are not unique, and may fail!

A greedy algorithm is not “just do the obvious thing at each stage”.
Sometimes there are multiple obvious things, and only a few will work!

Or we chose the shortest interval?

00 10 20 30 40 50 60

Still no luck. The lesson is: don’t give up trying if “the” greedy algorithm
doesn’t work, because there are lots of possible greedy algorithms!

John Lapinskas Greedy algos + interval scheduling 10 / 10


