
Correctness proofs for interval scheduling
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Interval scheduling correctness 1 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60

Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60

Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60

Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60

Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60

Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60
Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60
Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i },

t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Recall from last time

To solve interval scheduling with input R, we repeatedly choose the
compatible interval with the earliest finish time and add it to the output.

Goal: Prove our pseudocode GreedySchedule is correct.

00 10 20 30 40 50 60
Let’s define this formally: breaking ties arbitrarily, let

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

So (we think) GreedySchedule calculates A0, . . . ,At and outputs At .
Much easier to work from this than pseudocode when proving correctness!

John Lapinskas Interval scheduling correctness 2 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case:

✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 1: Express GreedySchedule mathematically

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Intuitive algorithm: Calculate and output At .

Algorithm: GreedySchedule

Input : An array R of n requests.
Output : Maximum compatible subset of R.

1 begin
2 Sort R’s entries so that

R← [(s1, f1), . . . , (sn, fn)] where f1 ≤ · · · ≤ fn.
3 Initialise A← [], lastf← 0.
4 foreach i ∈ {1, . . . , n} do
5 if si ≥ lastf then
6 Append (si , fi) to A and update

lastf← fi .

7 Return A.

Lemma: GreedySchedule
always outputs At .

Proof: By induction from the
following loop invariant. At the
start of the i ’th iteration of 4–7:

A is equal to
At∩{(s1, f1), . . . , (si−1, fi−1)};
lastf is equal to the latest
finish time of any request
in A (or 0 if A = []).

Base case: ✓

Inductive step:

John Lapinskas Interval scheduling correctness 3 / 10

Step 2: Prove our algorithm outputs a compatible set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set.

Proof: Instant by induction; A0 is compatible, and if Ai is compatible
then so is Ai+1 = Ai ∪ {A+} by the definition of A+

i .

Sometimes, life is easy!

(Without the lemma, this would have needed a tedious loop invariant...)

John Lapinskas Interval scheduling correctness 4 / 10

Step 2: Prove our algorithm outputs a compatible set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set.

Proof: Instant by induction; A0 is compatible, and if Ai is compatible
then so is Ai+1 = Ai ∪ {A+} by the definition of A+

i .

Sometimes, life is easy!

(Without the lemma, this would have needed a tedious loop invariant...)

John Lapinskas Interval scheduling correctness 4 / 10

Step 2: Prove our algorithm outputs a compatible set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set.

Proof: Instant by induction; A0 is compatible, and if Ai is compatible
then so is Ai+1 = Ai ∪ {A+} by the definition of A+

i .

Sometimes, life is easy!

(Without the lemma, this would have needed a tedious loop invariant...)

John Lapinskas Interval scheduling correctness 4 / 10

Step 3: Prove our algorithm outputs a maximum set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓
Lemma: At is a compatible set. ✓

Lemma: At is a maximum compatible subset of R.

Proof: This is harder! But there’s a trick: prove that if we compare At to
any other compatible set, At will always “do better” on a request-by-
request basis (not just overall). We can prove this by induction.

More formally, let B ⊆ R be any other compatible set with |B| ≥ |At |,
and let Bi consist of the i fastest-finishing elements of B.

Then we will show by induction that for all 0 ≤ i ≤ t, the last finish time
of Bi is no earlier than the last finish time of Ai .

John Lapinskas Interval scheduling correctness 5 / 10

Step 3: Prove our algorithm outputs a maximum set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓
Lemma: At is a compatible set. ✓

Lemma: At is a maximum compatible subset of R.

Proof: This is harder! But there’s a trick: prove that if we compare At to
any other compatible set, At will always “do better” on a request-by-
request basis (not just overall). We can prove this by induction.

More formally, let B ⊆ R be any other compatible set with |B| ≥ |At |,
and let Bi consist of the i fastest-finishing elements of B.

Then we will show by induction that for all 0 ≤ i ≤ t, the last finish time
of Bi is no earlier than the last finish time of Ai .

John Lapinskas Interval scheduling correctness 5 / 10

Step 3: Prove our algorithm outputs a maximum set

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓
Lemma: At is a compatible set. ✓

Lemma: At is a maximum compatible subset of R.

Proof: This is harder! But there’s a trick: prove that if we compare At to
any other compatible set, At will always “do better” on a request-by-
request basis (not just overall). We can prove this by induction.

More formally, let B ⊆ R be any other compatible set with |B| ≥ |At |,
and let Bi consist of the i fastest-finishing elements of B.

Then we will show by induction that for all 0 ≤ i ≤ t, the last finish time
of Bi is no earlier than the last finish time of Ai .

John Lapinskas Interval scheduling correctness 5 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i .

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i .

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Base case: A+
0 is the fastest-finishing request in R by definition. ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i .

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Base case: A+
0 is the fastest-finishing request in R by definition. ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i . Base case i = 1: ✓

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i . Base case i = 1: ✓

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Inductive step: Suppose Ai finishes faster than Bi .

Let B+
i be the (i + 1)′st fastest-finishing element of B.

Since Ai finishes faster than Bi , Ai ∪ {B+
i } is compatible.

Hence by definition, A+
i exists and finishes no later than B+

i . ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i . Base case i = 1: ✓

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Inductive step: Suppose Ai finishes faster than Bi .

Let B+
i be the (i + 1)′st fastest-finishing element of B.

Since Ai finishes faster than Bi , Ai ∪ {B+
i } is compatible.

Hence by definition, A+
i exists and finishes no later than B+

i . ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i . Base case i = 1: ✓

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Inductive step: Suppose Ai finishes faster than Bi .

Let B+
i be the (i + 1)′st fastest-finishing element of B.

Since Ai finishes faster than Bi , Ai ∪ {B+
i } is compatible.

Hence by definition, A+
i exists and finishes no later than B+

i . ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai .

Proof: By induction on i . Base case i = 1: ✓

00 10 20 30 40 50 60 70

Ai

Bi

· · ·

Inductive step: Suppose Ai finishes faster than Bi .

Let B+
i be the (i + 1)′st fastest-finishing element of B.

Since Ai finishes faster than Bi , Ai ∪ {B+
i } is compatible.

Hence by definition, A+
i exists and finishes no later than B+

i . ✓

John Lapinskas Interval scheduling correctness 6 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set. ✓

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai . ✓

Putting it all together, we obtain...

Theorem: GreedySchedule outputs At , which is a maximum
compatible set.

This technique of proving that the greedy solution “stays ahead” of any
other solution is very useful for other greedy algorithms as well!

John Lapinskas Interval scheduling correctness 7 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set. ✓

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai . ✓

Putting it all together, we obtain...

Theorem: GreedySchedule outputs At , which is a maximum
compatible set.

This technique of proving that the greedy solution “stays ahead” of any
other solution is very useful for other greedy algorithms as well!

John Lapinskas Interval scheduling correctness 7 / 10

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set. ✓

Lemma: Let B ⊆ R be any compatible set with |B| ≥ |At |, and let Bi consist of the i
fastest-finishing elements of B. Then i ≤ t, and the last finish time of Bi is no earlier than the
last finish time of Ai . ✓

Putting it all together, we obtain...

Theorem: GreedySchedule outputs At , which is a maximum
compatible set.

This technique of proving that the greedy solution “stays ahead” of any
other solution is very useful for other greedy algorithms as well!

John Lapinskas Interval scheduling correctness 7 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality
A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

An alternative method: show that any maximum compatible set B can be
turned into At without changing the number of intervals.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

Proof: By induction on i .

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1

· · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

Proof: By induction on i . Base case: Immediate for i = 0. ✓

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1 · · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

Proof: By induction on i . Base case: Immediate for i = 0. ✓

Inductive step: Suppose (B\Bi)∪Ai is compatible, write Bi+1\Bi = {B+
i }.

Then we are done if A+
i is compatible with Ai and B \ Bi+1.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1 · · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

Proof: By induction on i . Base case: Immediate for i = 0. ✓

Inductive step: Suppose (B\Bi)∪Ai is compatible, write Bi+1\Bi = {B+
i }.

Then we are done if A+
i is compatible with Ai and B \ Bi+1.

A+
i is compatible with Ai by definition.

John Lapinskas Interval scheduling correctness 8 / 10

An alternative proof of optimality

A+ := argmin{f : (s, f) ∈ R,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

00 10 20 30 40 50 60 70

At

B

(B \ B1) ∪ A1 B+
1

A+
1 · · ·

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the
i ≥ 0 fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible.

Proof: By induction on i . Base case: Immediate for i = 0. ✓

Inductive step: Suppose (B\Bi)∪Ai is compatible, write Bi+1\Bi = {B+
i }.

Then we are done if A+
i is compatible with Ai and B \ Bi+1.

A+
i is compatible with Ai by definition. By induction, B \ Bi ∪ Ai is com-

patible, so B+
i is compatible with Ai , so A+

i finishes earlier than B+
i by

definition. Hence A+
i is also compatible with B \ Bi+1. ✓

John Lapinskas Interval scheduling correctness 8 / 10

A+ := argmin{f : (s, f) ∈ R \ A,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set. ✓

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the i ≥ 0
fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible. ✓

Theorem: At is a maximum compatible set.

On taking i = t, we see that (B \ Bt) ∪ At is compatible — i.e. we can
remove the first t intervals from B and replace them with the whole of At .

Since At is maximal — that is, since we can’t add any intervals to At and
keep it compatible — it follows that |B| = |At |.

(Exercise: Prove that At is maximal...)

John Lapinskas Interval scheduling correctness 9 / 10

A+ := argmin{f : (s, f) ∈ R \ A,A ∪ {(s, f)} is compatible} for all A ⊆ R,

A0 := ∅, Ai+1 := Ai ∪ {A+
i }, t := max{i : Ai is defined}.

Lemma: GreedySchedule outputs At . ✓

Lemma: At is a compatible set. ✓

Lemma: Suppose B is compatible and |B| ≥ |At |, and let Bi consist of the i ≥ 0
fastest-finishing elements of B. Then (B \ Bi) ∪ Ai is compatible. ✓

Theorem: At is a maximum compatible set.

On taking i = t, we see that (B \ Bt) ∪ At is compatible — i.e. we can
remove the first t intervals from B and replace them with the whole of At .

Since At is maximal — that is, since we can’t add any intervals to At and
keep it compatible — it follows that |B| = |At |.

(Exercise: Prove that At is maximal...)

John Lapinskas Interval scheduling correctness 9 / 10

Choosing between the two methods

Both types of argument used this lecture, “greedy stays ahead proofs”
and “exchange proofs”, are powerful and widely-used.

Sometimes only one approach will work easily, but often (like here) the
two approaches feel like they are doing the same thing under the surface.
Use whichever one you find more natural — it’s a matter of taste!

John Lapinskas Interval scheduling correctness 10 / 10

Choosing between the two methods

Both types of argument used this lecture, “greedy stays ahead proofs”
and “exchange proofs”, are powerful and widely-used.

Sometimes only one approach will work easily, but often (like here) the
two approaches feel like they are doing the same thing under the surface.
Use whichever one you find more natural — it’s a matter of taste!

John Lapinskas Interval scheduling correctness 10 / 10

