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The eponymous bridges

The residents of Königsberg in the 18th century had a game: they would
try to walk through the city while crossing every bridge exactly once.

In 1736, the mayor of Danzig asked Leonhard Euler whether or not it was
actually possible, inadvertently laying the foundations for an entire branch
of mathematics.
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Basic definitions

A graph is a pair G = (V ,E ), where V = V (G) is a set of vertices and
E = E(G) is a set of edges contained in {{u, v} : u, v ∈ V , u ̸= v}.

We picture vertices as dots, and each edge {u, v} as a line joining u and v .

For example, if our vertices are islands and bridges, and we join an island
to a bridge if they’re adjacent:
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A walk in a graph G = (V ,E ) is a sequence of vertices v0 . . . vk such that
{vi , vi+1} ∈ E for all i ≤ k − 1.

We say the walk is from v0 to vk and call k the length of the walk.

For example: i1 b1 i2 b3 i3 b4 i2 b2 i1 b7 i4 b6 i2.

i1

i2

i3

i4

b1 b2

b3 b4
b5

b6

b7

An Euler walk is one which contains every edge in G exactly once.
The mayor effectively asked: does this graph have an Euler walk?
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Why bother?

For this specific problem, we could just think about Königsberg itself, or
about general islands and bridges. (That’s what Euler did!)

But using general graphs comes with three advantages:

The graph picture is easier to think about than a picture of
Königsberg — the irrelevant detail is stripped away.

By learning about graphs, we can easily recognise when real-world
problems are actually graph problems we already know how to solve.
(Like using design patterns rather than reinventing the wheel.)

By building up a general theory of graphs, rather than starting from
scratch for each individual problem, we can solve far harder problems
that we would otherwise be able to.

One disadvantage: The next few videos will have a lot of definitions!
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But it’s just a toy problem!

Graphs can be used to model far more things than just Königsberg!

The National Grid.

The road system in a city.

The Internet.

Social networks like Facebook.

Resource allocation problems.

Circuit design problems.

Dependencies between software packages.

Evolutionary relationships between organisms.

The spread of an epidemic.

Route planning problems.

Heap data structures as seen in COMS10007.

And many, many, many more...
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When are two graphs equal?

Two graphs G1 = (V1,E1) and G2 = (V2,E2) are equal, written G1 = G2,
if V1 = V2 and E1 = E2.

But that means...

1

2

3 4

5

6

G1 G2
̸=

even though they’re clearly “the same graph”!

G1 and G2 are isomorphic, written G1 ≃ G2, if there’s a bijection
f : V1 → V2 such that {f (u), f (v)} ∈ E2 if and only if {u, v} ∈ E1.

Intuitively: G1 ≃ G2 if they are the same graph with relabelled vertices.
Here, G1 ̸= G2 but G1 ≃ G2. (Take e.g. f (1) = 4, f (2) = 5, f (3) = 6.)
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Another terminology slide...

In a graph G = (V ,E ), the neighbourhood of a vertex v is the set of
vertices joined to v by an edge. Formally: NG (v) = {w ∈ V : {v ,w} ∈ E}.

We just write this as N(v) if G is obvious from context. Also, for all sets
of vertices X ⊆ V , we write NG (X ) =

⋃
v∈X NG (v).

The degree of a vertex v is the number of vertices joined to v . Formally:
dG (v) = |NG (v)|.

Again, we just write this as d(v) if G is obvious from context.

i1

i2

i3

i4

b1 b2

b3 b4
b5

b6

b7

Here N(i3) = {b3, b4, b5},
and d(i3) = 3.
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Back to the bridges!

A walk in a graph G = (V ,E) is a sequence of vertices v0 . . . vk such that {vi , vi+1} ∈ E for all
i ≤ k − 1. An Euler walk is one which contains every edge in G exactly once.

The degree of v , d(v), is the number of vertices joined to v by edges.

Euler noticed: any walk with v0 = vk uses an even number of edges from
every vertex, since it leaves each vertex immediately after entering.

Similarly, any walk with v0 ̸= vk uses an odd number of edges from v0 and
vk , and an even number from any other vertex.

But an Euler walk has to use every edge at every vertex!

Theorem: If G has an Euler walk, then either:

every vertex of G has even degree; or

all but two vertices v0 and vk have even degree, and any Euler walk
must have v0 and vk as endpoints.
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In Königsberg, i1, i2, i3 and i4
all have odd degree, so no
Euler walk exists!
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