When does a graph have an Euler walk? COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Last video: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- all but two vertices v_{0} and v_{k} have even degree, and any Euler walk must have v_{0} and v_{k} as endpoints.

Does every graph satisfying one of these have an Euler walk? No! E.g.:

Every vertex has even degree, but we can't cross between the triangles. We need some more definitions to rule this case out...

Connectedness

A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path. So...

This graph is not connected because there's no path from 3 to 4 (say).
Exercise: Two vertices are joined by a path if and only if they are joined by a walk. (Paths are just more convenient to use.)

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

For all vertex sets $X \subseteq V$, the graph induced by X is

$$
G[X]=(X,\{e \in E: e \subseteq X\})
$$

So if G is the above graph, then the subgraph shown is $G[\{1,2,6\}]$.

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

A component H of G is a maximal connected induced subgraph of G. So $H=G\left[V_{H}\right]$ is connected, but $G\left[V_{H} \cup\{v\}\right]$ is disconnected for all $v \in V \backslash V_{H}$. Here, the two components of G are the left and right triangles. A connected graph only has one component, namely the graph itself.

We'd also like to have names for the left and right triangles.
Let $G=(V, E)$ be a graph.
A subgraph $H=\left(V_{H}, E_{H}\right)$ of G is a graph with $V_{H} \subseteq V$ and $E_{H} \subseteq E$. H is an induced subgraph if $V_{H} \subseteq V$ and $E_{H}=\left\{e \in E: e \subseteq V_{H}\right\}$.

A component H of G is a maximal connected induced subgraph of G. So $H=G\left[V_{H}\right]$ is connected, but $G\left[V_{H} \cup\{v\}\right]$ is disconnected for all $v \in V \backslash V_{H}$. Here, the two components of G are the left and right triangles. A connected graph only has one component, namely the graph itself. We call a single-vertex component an isolated vertex.

A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path.
Theorem: Let $G=(V, E)$ be a connected graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:
(i) $u=v$ and every vertex of G has even degree; or
(ii) $u \neq v$ and every vertex of G has even degree except u and v.

We have already proved the "only if" direction.

Proof of "if", case (i):

Suppose G is connected, $v \in V$, and every vertex of G has even degree.
Idea: Try working greedily!
Form a walk $W=w_{0} \ldots w_{k}$ as follows:

- take $w_{0}=v$;
- take w_{i} to be an arbitrary neighbour of w_{i-1} such that $\left\{w_{i-1}, w_{i}\right\}$ is not already a W-edge;
- stop when every edge out of w_{i} is already a W-edge.

A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path.
Goal: Let $G=(V, E)$ be a connected graph with even vertex degrees. Then for all $v \in V, G$ has an Euler walk from v to v.

Idea: Form a walk $W=w_{0} \ldots w_{k}$ by taking $w_{0}=v$, extending greedily without reusing edges, and stopping when $N\left(w_{i}\right) \subseteq\left\{w_{0}, \ldots, w_{i-1}\right\}$.

This need not give an Euler walk...

But it still gives us something.
Claim: $w_{k}=w_{0}=v$.
Proof: For a vertex x, how many W-edges are incident to x ?

- Two for each time x appears in $\left\{w_{1}, \ldots, w_{k-1}\right\}$;
- Plus one if $x=w_{0}$;
- Plus one if $x=w_{k}$.

We know w_{k} has $d\left(w_{k}\right) W$-edges, and $d\left(w_{k}\right)$ is even, so $w_{0}=w_{k}$.

Goal: Let $G=(V, E)$ be a connected graph with even vertex degrees. Then for all $v \in V, G$ has an Euler walk from v to v.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Idea: Strong induction on $|E|$.
Base case: $|E|=0$, immediate.
Induction step: Apply induction hypothesis to find Euler walks W_{i} for all non-empty components C_{i} of the subgraph $G-W$ formed by removing W 's edges from G :

- Each vertex has even degree in both W and G, and hence also in $G-W$.
- Each component C_{i} is connected by definition.

Goal: Let $G=(V, E)$ be a connected graph with even vertex degrees. Then for all $v \in V, G$ has an Euler walk from v to v.

Lemma: G has a non-trivial walk W from v to v with no reused edges.
Induction hypothesis \Rightarrow each non-trivial component C_{i} of $G-W$ has an Euler walk W_{i} from any vertex to itself.

Idea: "Walk along W until we hit C_{1}, then follow W_{1}, then go back to W, and so on."
G connected \Rightarrow there is a path P_{i} from v to each C_{i}. Let v_{i} be the first vertex in C_{i} on P_{i}.

Then some edge incident to v_{i} must have been removed in $G-W$, or the vertex before v_{i} on P_{i} would have been part of C_{i}.

So $v_{i} \in W$.

Goal: Let $G=(V, E)$ be a connected graph with even vertex degrees. Then for all $v \in V, G$ has an Euler walk from v to v.

Lemma: G has a non-trivial walk W from v to v with no reused edges.
Induction hypothesis \Rightarrow each non-trivial component C_{i} of $G-W$ has an Euler walk W_{i} from any vertex to itself.

We have found vertices v_{i} which lie in both C_{i} and W.

Wlog, if G has r non-trivial components, W reaches first v_{1}, then v_{2}, and so on up to v_{r}. (Otherwise we can just reorder C_{1}, \ldots, C_{r}.)

So our idea works! We follow W until reaching v_{1}, then follow all of W_{1} (returning to v_{1}), then follow W until reaching v_{2}, and so on.

Note this gives us an algorithm!

Breather slide: Leonhard Euler (1707-1783)

- One of the greatest mathematicians of all time.
- Discovered foundational ideas in just about every single field of modern mathematics.
- Not only proved $e^{i \pi}+1=0$, but introduced the notation for e, i and π.
- Over 800 papers and books written, constituting about one third of all research in maths and physics and engineering mechanics in 1725-1800.

Theorem: Let $G=(V, E)$ be a connected graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:
(i) $u=v$ and every vertex of G has even degree; or
(ii) $u \neq v$ and every vertex of G has even degree except u and v.
"Only if": \checkmark
"If" case (i): \checkmark
Suppose $u \neq v, d(u)$ and $d(v)$ are odd, and every other degree is even. We could use a very similar argument to part (i), but there's an easier way: we reduce the problem to part (i).

Form a new graph, G^{\prime}, by adding a new vertex w and edges from u to w and w to v. Then every vertex of G^{\prime} has even degree, so G^{\prime} contains an Euler walk W starting and ending at u by part (i).

Then we remove the subpath $u w v$ from W, which turns it into an Euler walk from u to v in G.

Again, this proof gives us an algorithm. So we know exactly which graphs have Euler walks, and we can find them quickly when they exist!

