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Last video: If G has an Euler walk, then either:

every vertex of G has even degree; or

all but two vertices v0 and vk have even degree, and any Euler walk must have v0 and vk
as endpoints.

Does every graph satisfying one of these have an Euler walk? No! E.g.:
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Every vertex has even degree, but we can’t cross between the triangles.
We need some more definitions to rule this case out...

John Lapinskas Conditions for an Euler walk 2 / 10



Connectedness

A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path. So...
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This graph is not connected because there’s no path from 3 to 4 (say).

Exercise: Two vertices are joined by a path if and only if they are joined
by a walk. (Paths are just more convenient to use.)
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We’d also like to have names for the left and right triangles.

Let G = (V ,E ) be a graph.
A subgraph H = (VH ,EH) of G is a graph with VH ⊆ V and EH ⊆ E .
H is an induced subgraph if VH ⊆ V and EH = {e ∈ E : e ⊆ VH}.
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We’d also like to have names for the left and right triangles.

Let G = (V ,E ) be a graph.
A subgraph H = (VH ,EH) of G is a graph with VH ⊆ V and EH ⊆ E .
H is an induced subgraph if VH ⊆ V and EH = {e ∈ E : e ⊆ VH}.

For all vertex sets X ⊆ V , the graph induced by X is

G [X ] = (X , {e ∈ E : e ⊆ X}).

So if G is the above graph, then the subgraph shown is G [{1, 2, 6}].
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We’d also like to have names for the left and right triangles.

Let G = (V ,E ) be a graph.
A subgraph H = (VH ,EH) of G is a graph with VH ⊆ V and EH ⊆ E .
H is an induced subgraph if VH ⊆ V and EH = {e ∈ E : e ⊆ VH}.

A component H of G is a maximal connected induced subgraph of G . So
H = G [VH ] is connected, but G [VH∪{v}] is disconnected for all v ∈ V \VH .

Here, the two components of G are the left and right triangles.
A connected graph only has one component, namely the graph itself.
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We’d also like to have names for the left and right triangles.

Let G = (V ,E ) be a graph.
A subgraph H = (VH ,EH) of G is a graph with VH ⊆ V and EH ⊆ E .
H is an induced subgraph if VH ⊆ V and EH = {e ∈ E : e ⊆ VH}.

A component H of G is a maximal connected induced subgraph of G . So
H = G [VH ] is connected, but G [VH∪{v}] is disconnected for all v ∈ V \VH .

Here, the two components of G are the left and right triangles.
A connected graph only has one component, namely the graph itself.

We call a single-vertex component an isolated vertex.
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A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path.

Theorem: Let G = (V ,E ) be a connected graph, and let u, v ∈ V .
Then G has an Euler walk from u to v if and only if either:

(i) u = v and every vertex of G has even degree; or

(ii) u ̸= v and every vertex of G has even degree except u and v .

We have already proved the “only if” direction. ✓

Proof of “if”, case (i):
Suppose G is connected, v ∈ V , and every vertex of G has even degree.

Idea: Try working greedily!

Form a walk W = w0 . . .wk as follows:

take w0 = v ;

take wi to be an arbitrary neighbour of wi−1 such that {wi−1,wi} is
not already a W -edge;

stop when every edge out of wi is already a W -edge.
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A path is a walk in which no vertices repeat.
A graph is connected if any two vertices are joined by a path.

Goal: Let G = (V ,E) be a connected graph with even vertex degrees. Then for all v ∈ V , G
has an Euler walk from v to v .

Idea: Form a walk W = w0 . . .wk by taking w0 = v , extending greedily without reusing edges,
and stopping when N(wi ) ⊆ {w0, . . . ,wi−1}.

This need not give an Euler walk...

W

v

But it still gives us something.

Claim: wk = w0 = v .

Proof: For a vertex x , how many
W -edges are incident to x?

Two for each time x appears in
{w1, . . . ,wk−1};
Plus one if x = w0;

Plus one if x = wk .

We know wk has d(wk) W -edges,
and d(wk) is even, so w0 = wk . ✓
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Goal: Let G = (V ,E) be a connected graph with even vertex degrees. Then for all v ∈ V , G
has an Euler walk from v to v .

Lemma: G has a non-trivial walk W from v to v with no reused edges. ✓
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Idea: Strong induction on |E |.

Base case: |E | = 0, immediate.

Induction step: Apply induction
hypothesis to find Euler walks Wi for
all non-empty components Ci of the
subgraph G −W formed by
removing W ’s edges from G :

Each vertex has even degree in
both W and G , and hence also
in G −W . ✓

Each component Ci is
connected by definition. ✓
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Goal: Let G = (V ,E) be a connected graph with even vertex degrees. Then for all v ∈ V , G
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Lemma: G has a non-trivial walk W from v to v with no reused edges. ✓

Induction hypothesis ⇒ each non-trivial component Ci of G −W has an Euler walk Wi from
any vertex to itself. ✓
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Idea: “Walk along W until we hit C1,
then follow W1, then go back to W ,
and so on.”

G connected ⇒ there is a path Pi

from v to each Ci . Let vi be the first
vertex in Ci on Pi .

Then some edge incident to vi must
have been removed in G −W , or the
vertex before vi on Pi would have been
part of Ci .

So vi ∈ W .
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We have found vertices vi which lie in
both Ci and W .

Wlog, if G has r non-trivial compo-
nents, W reaches first v1, then v2,
and so on up to vr . (Otherwise we
can just reorder C1, . . . ,Cr .)

So our idea works! We follow W un-
til reaching v1, then follow all of W1

(returning to v1), then follow W until
reaching v2, and so on.

Note this gives us an algorithm!
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Breather slide: Leonhard Euler (1707–1783)

One of the greatest
mathematicians of all time.

Discovered foundational ideas
in just about every single field
of modern mathematics.

Not only proved e iπ + 1 = 0,
but introduced the notation for
e, i and π.

Over 800 papers and books
written, constituting about
one third of all research in
maths and physics and
engineering mechanics in
1725–1800.
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Theorem: Let G = (V ,E) be a connected graph, and let u, v ∈ V . Then G has an Euler walk
from u to v if and only if either:

(i) u = v and every vertex of G has even degree; or

(ii) u ̸= v and every vertex of G has even degree except u and v .

“Only if”: ✓ “If” case (i): ✓

Suppose u ̸= v , d(u) and d(v) are odd, and every other degree is even.
We could use a very similar argument to part (i), but there’s an easier
way: we reduce the problem to part (i).

Form a new graph, G ′, by adding a new vertex w and edges from u to w
and w to v . Then every vertex of G ′ has even degree, so G ′ contains an
Euler walk W starting and ending at u by part (i).

Then we remove the subpath uwv from W , which turns it into an Euler
walk from u to v in G .

Again, this proof gives us an algorithm. So we know exactly which graphs
have Euler walks, and we can find them quickly when they exist!
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