When does a graph have an Euler walk? COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Last video: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- all but two vertices v_0 and v_k have even degree, and any Euler walk must have v_0 and v_k as endpoints.

Last video: If G has an Euler walk, then either:

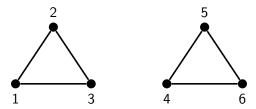
- every vertex of G has even degree; or
- ullet all but two vertices v_0 and v_k have even degree, and any Euler walk must have v_0 and v_k as endpoints.

Does every graph satisfying one of these have an Euler walk?

Last video: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- ullet all but two vertices v_0 and v_k have even degree, and any Euler walk must have v_0 and v_k as endpoints.

Does every graph satisfying one of these have an Euler walk? No! E.g.:

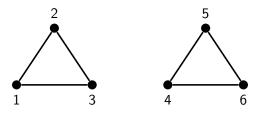


Every vertex has even degree, but we can't cross between the triangles. We need some more definitions to rule this case out...

Connectedness

A path is a walk in which no vertices repeat.

A graph is connected if any two vertices are joined by a path. So...

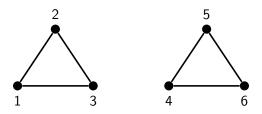


This graph is **not** connected because there's no path from 3 to 4 (say).

Connectedness

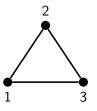
A path is a walk in which no vertices repeat.

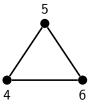
A graph is **connected** if any two vertices are joined by a path. So...

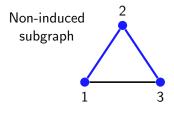


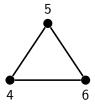
This graph is **not** connected because there's no path from 3 to 4 (say).

Exercise: Two vertices are joined by a path if and only if they are joined by a walk. (Paths are just more convenient to use.)

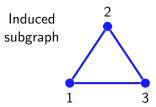


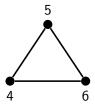




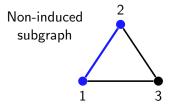


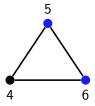
Let G = (V, E) be a graph.



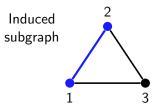


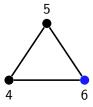
Let G = (V, E) be a graph.



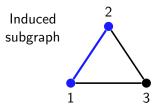


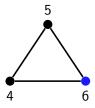
Let G = (V, E) be a graph.





Let G = (V, E) be a graph.





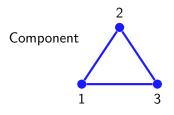
Let G = (V, E) be a graph.

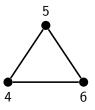
A subgraph $H = (V_H, E_H)$ of G is a graph with $V_H \subseteq V$ and $E_H \subseteq E$. H is an induced subgraph if $V_H \subseteq V$ and $E_H = \{e \in E : e \subseteq V_H\}$.

For all vertex sets $X \subseteq V$, the graph **induced** by X is

$$G[X] = (X, \{e \in E : e \subseteq X\}).$$

So if G is the above graph, then the subgraph shown is $G[\{1,2,6\}]$.





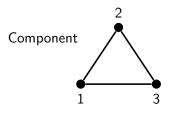
Let G = (V, E) be a graph.

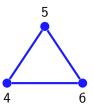
A subgraph $H = (V_H, E_H)$ of G is a graph with $V_H \subseteq V$ and $E_H \subseteq E$. H is an induced subgraph if $V_H \subseteq V$ and $E_H = \{e \in E : e \subseteq V_H\}$.

A **component** H of G is a maximal connected induced subgraph of G. So $H = G[V_H]$ is connected, but $G[V_H \cup \{v\}]$ is disconnected for all $v \in V \setminus V_H$.

Here, the two components of G are the left and right triangles.

A connected graph only has one component, namely the graph itself.





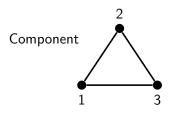
Let G = (V, E) be a graph.

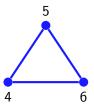
A subgraph $H = (V_H, E_H)$ of G is a graph with $V_H \subseteq V$ and $E_H \subseteq E$. H is an induced subgraph if $V_H \subseteq V$ and $E_H = \{e \in E : e \subseteq V_H\}$.

A **component** H of G is a maximal connected induced subgraph of G. So $H = G[V_H]$ is connected, but $G[V_H \cup \{v\}]$ is disconnected for all $v \in V \setminus V_H$.

Here, the two components of G are the left and right triangles.

A connected graph only has one component, namely the graph itself.





Let G = (V, E) be a graph.

A subgraph $H = (V_H, E_H)$ of G is a graph with $V_H \subseteq V$ and $E_H \subseteq E$. H is an induced subgraph if $V_H \subseteq V$ and $E_H = \{e \in E : e \subseteq V_H\}$.

A **component** H of G is a maximal connected induced subgraph of G. So $H = G[V_H]$ is connected, but $G[V_H \cup \{v\}]$ is disconnected for all $v \in V \setminus V_H$.

Here, the two components of G are the left and right triangles.

A connected graph only has one component, namely the graph itself.

We call a single-vertex component an **isolated vertex**.

A graph is **connected** if any two vertices are joined by a path.

Theorem: Let G = (V, E) be a **connected** graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:

- (i) u = v and every vertex of G has even degree; or
- (ii) $u \neq v$ and every vertex of G has even degree except u and v.

We have already proved the "only if" direction.

A graph is **connected** if any two vertices are joined by a path.

Theorem: Let G = (V, E) be a **connected** graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:

- (i) u = v and every vertex of G has even degree; or
- (ii) $u \neq v$ and every vertex of G has even degree except u and v.

We have already proved the "only if" direction.

Proof of "if", case (i):

Suppose G is connected, $v \in V$, and every vertex of G has even degree.

Idea: Try working greedily!

A graph is connected if any two vertices are joined by a path.

Theorem: Let G = (V, E) be a **connected** graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:

- (i) u = v and every vertex of G has even degree; or
- (ii) $u \neq v$ and every vertex of G has even degree except u and v.

We have already proved the "only if" direction.

Proof of "if", case (i):

Suppose G is connected, $v \in V$, and every vertex of G has even degree.

Idea: Try working greedily!

Form a walk $W = w_0 \dots w_k$ as follows:

- take $w_0 = v$;
- take w_i to be an arbitrary neighbour of w_{i-1} such that $\{w_{i-1}, w_i\}$ is not already a W-edge;
- stop when every edge out of w_i is already a W-edge.

A graph is **connected** if any two vertices are joined by a path.

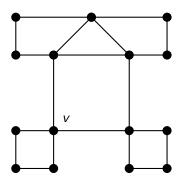
Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.

A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

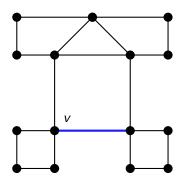
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

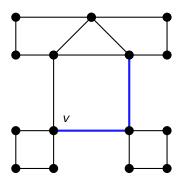
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

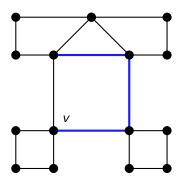
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

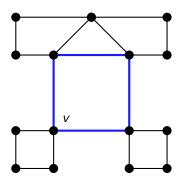
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

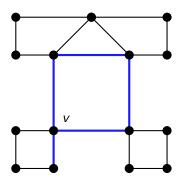
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is connected if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

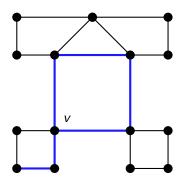
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

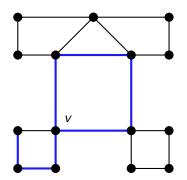
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

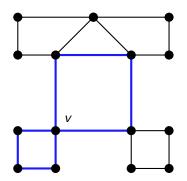
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

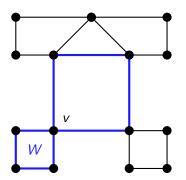
Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.



A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.

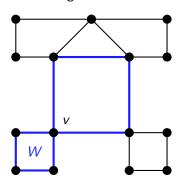


A graph is **connected** if any two vertices are joined by a path.

Goal: Let G = (V, E) be a **connected** graph with even vertex degrees. Then for all $v \in V$, G has an Euler walk from v to v.

Idea: Form a walk $W = w_0 \dots w_k$ by taking $w_0 = v$, extending greedily without reusing edges, and stopping when $N(w_i) \subseteq \{w_0, \dots, w_{i-1}\}$.

This need not give an Euler walk...



But it still gives us something.

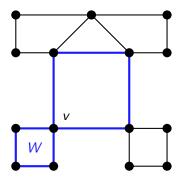
Claim: $w_k = w_0 = v$.

Proof: For a vertex x, how many W-edges are incident to x?

- Two for each time x appears in $\{w_1, \ldots, w_{k-1}\}$;
- Plus one if $x = w_0$;
- Plus one if $x = w_k$.

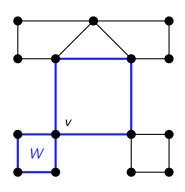
We know w_k has $d(w_k)$ W-edges, and $d(w_k)$ is even, so $w_0 = w_k$.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

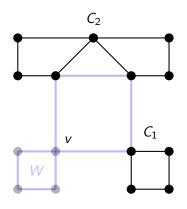


Lemma: G has a non-trivial walk W from v to v with no reused edges.

Idea: Strong induction on |E|. **Base case:** |E| = 0, immediate.



Lemma: G has a non-trivial walk W from v to v with no reused edges.

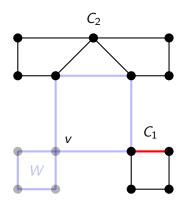


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

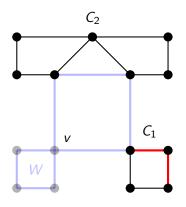


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

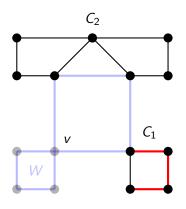


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

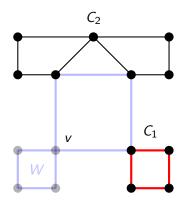


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

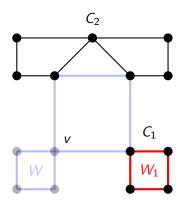


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G − W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

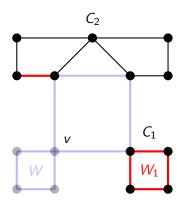


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

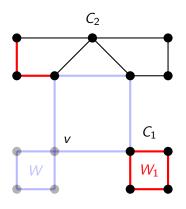


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

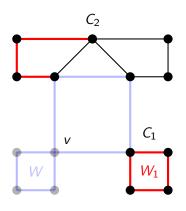


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

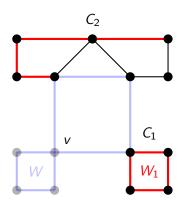


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

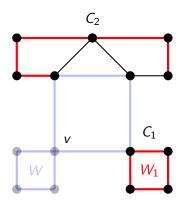


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

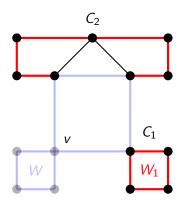


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

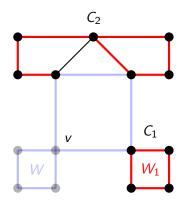


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

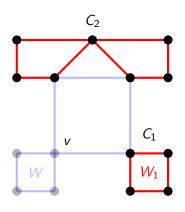


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

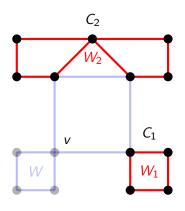


Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G − W.
- Each component C_i is connected by definition.

Lemma: G has a non-trivial walk W from v to v with no reused edges.



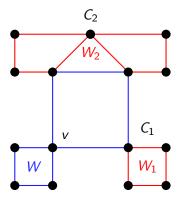
Idea: Strong induction on |E|.

Base case: |E| = 0, immediate.

- Each vertex has even degree in both W and G, and hence also in G – W.
- Each component C_i is connected by definition.

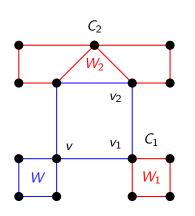
Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



Idea: "Walk along W until we hit C_1 , then follow W_1 , then go back to W, and so on."

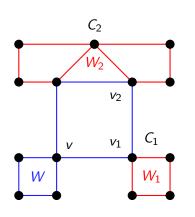
G connected \Rightarrow there is a path P_i from v to each C_i . Let v_i be the first vertex in C_i on P_i .

Then some edge incident to v_i must have been removed in G - W, or the vertex before v_i on P_i would have been part of C_i .

So $v_i \in W$.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



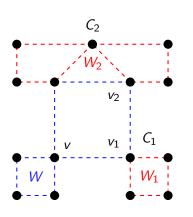
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



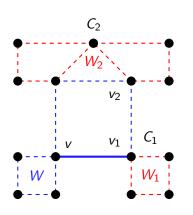
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



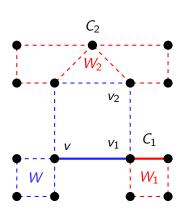
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



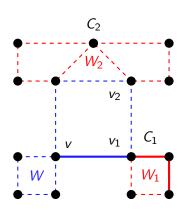
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



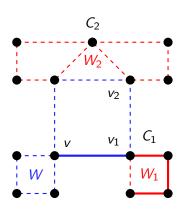
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



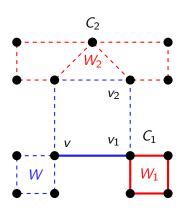
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



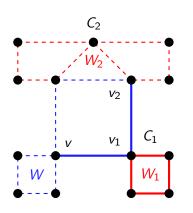
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



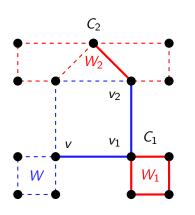
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



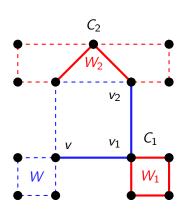
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



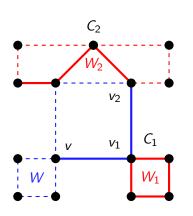
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



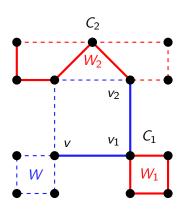
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



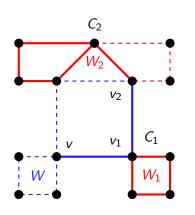
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



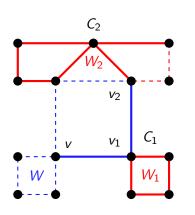
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



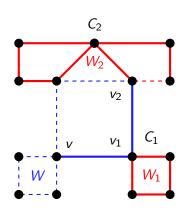
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



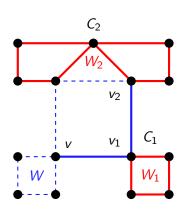
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



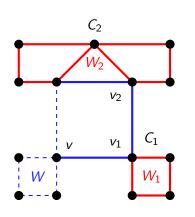
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



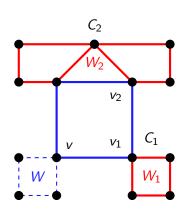
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



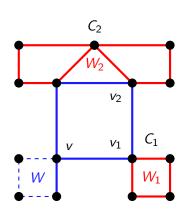
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



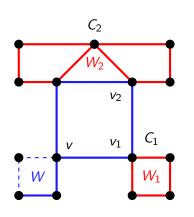
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



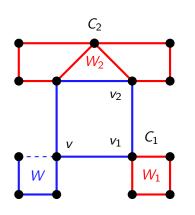
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



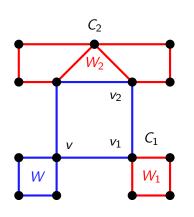
We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Lemma: G has a non-trivial walk W from v to v with no reused edges.

Induction hypothesis \Rightarrow each non-trivial component C_i of G-W has an Euler walk W_i from any vertex to itself.



We have found vertices v_i which lie in both C_i and W.

Wlog, if G has r non-trivial components, W reaches first v_1 , then v_2 , and so on up to v_r . (Otherwise we can just reorder C_1, \ldots, C_r .)

So our idea works! We follow W until reaching v_1 , then follow all of W_1 (returning to v_1), then follow W until reaching v_2 , and so on.

Breather slide: Leonhard Euler (1707–1783)

- One of the greatest mathematicians of all time.
- Discovered foundational ideas in just about every single field of modern mathematics.
- Not only proved $e^{i\pi} + 1 = 0$, but introduced the notation for e, i and π .
- Over 800 papers and books written, constituting about one third of all research in maths and physics and engineering mechanics in 1725–1800.

Theorem: Let G = (V, E) be a **connected** graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:

- (i) u = v and every vertex of G has even degree; or
- (ii) $u \neq v$ and every vertex of G has even degree except u and v.

"Only if": √ "If" case (i): √

Suppose $u \neq v$, d(u) and d(v) are odd, and every other degree is even. We could use a very similar argument to part (i), but there's an easier way: we **reduce** the problem to part (i).

Theorem: Let G = (V, E) be a **connected** graph, and let $u, v \in V$. Then G has an Euler walk from u to v if and only if either:

- (i) u = v and every vertex of G has even degree; or
- (ii) $u \neq v$ and every vertex of G has even degree except u and v.

"Only if": √ "If" case (i): √

Suppose $u \neq v$, d(u) and d(v) are odd, and every other degree is even. We could use a very similar argument to part (i), but there's an easier way: we **reduce** the problem to part (i).

Form a new graph, G', by adding a new vertex w and edges from u to w and w to v. Then every vertex of G' has even degree, so G' contains an Euler walk W starting and ending at u by part (i).

Then we remove the subpath uwv from W, which turns it into an Euler walk from u to v in G.

Again, this proof gives us an algorithm. So we know exactly which graphs have Euler walks, and we can find them quickly when they exist!