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Last week...

One piece of new notation: For all integers n ≥ 1, [n] := {1, . . . , n}.

A walk from u to v in a graph G = (V ,E ) is a sequence of vertices
w0 . . .wk with w0 = u, wk = v , and with {vi , vi+1} ∈ E for all i ≤ k − 1.

A path is a walk with no repeated vertices.

An Euler walk is a walk containing every edge in G exactly once.

A vertex’s degree is the number of edges intersecting (“incident to”) it.

A graph is connected if any two vertices are joined by a path.

We showed that a connected graph has an Euler walk if and only if either
all, or all but two, of its vertices have even degree.
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Directed graphs

A directed graph (or digraph) is a pair G = (V ,E ), where V is a set of
vertices and E is a set of edges contained in {(u, v) : u, v ∈ V , u ̸= v}}.

E.g. V = [4] and E = {(1, 2), (2, 1), (1, 3), (3, 2)} looks like:

1 2

3 4

We use directed graphs when we want to model asymmetric relations.

For example, a software dependency graph: “vi depends on the kernel”
shouldn’t imply “the kernel depends on vi”!
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A directed graph (or digraph) is a pair G = (V ,E), where V is a set of vertices and E is a set
of edges contained in {(u, v) : u, v ∈ V , u ̸= v}}.

Most graph definitions (subgraphs etc.) carry over to digraphs unchanged.

To develop our intuition for those that don’t, we now generalise our Euler
walks result to digraphs.

A walk in a digraph G is defined in (almost) the same way as in a graph:
a sequence of vertices w0 . . .wk with (wi ,wi+1) ∈ E for all i ≤ k − 1.

Again as in graphs, a path is a walk with no repeated vertices, and an
Euler walk is a walk which uses every edge in the graph exactly once. E.g.:

1 2

3 4
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A directed graph (or digraph) is a pair G = (V ,E), where V is a set of vertices and E is a set
of edges contained in {(u, v) : u, v ∈ V , u ̸= v}}.

A walk from u to v is a sequence of vertices w0 . . .wk with w0 = u, wv = v and (wi ,wi+1) ∈ E
for all i ≤ k − 1.

A path is a walk with no repeated vertices.

G is strongly connected if for all u, v ∈ V , there is a path from u to v
and a path from v to u.

Warning: For undirected graphs, these two paths would be the same.
But here, G can have a path from u to v , but no path from v to u!

1 2

3 4

So this graph is not strongly connected, as
there’s no path from 4 to 1.

And yet it still has an Euler walk...
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G is strongly connected if for all u, v ∈ V , there is a path from u to v .

A digraph can have an Euler walk despite not being strongly connected...

So we need another notion of connectivity too. G is weakly connected if
for all u, v ∈ V , there is a path from u to v ignoring edge directions.

1 2

3 4

This graph is weakly connected...

1 2

3 4

5

But this graph is not (it has no
path from 2 to 4 or from 4 to 2).

As with graphs, (resp. ) of digraphs are maximal strongly (resp. weakly)
connected induced subgraphs.

A digraph definitely can’t have an Euler walk if it’s not weakly connected!
And it can’t have one with equal endpoints if it’s not strongly connected.
(At least if there are no isolated vertices...)
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Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

As with undirected graphs, the neighbourhood N(v) of a vertex v is the
set of vertices it’s adjacent to, and its degree d(v) is the number of edges
v is contained in. But...

Here every vertex has even degree (namely
degree 2), but there’s no Euler walk!

We define the in-neighbourhood N−(v) and the out-neighbourhood
N+(v) of a vertex v by

N−(v) = {u ∈ V (G ) : (u, v) ∈ E (G )},
N+(v) = {w ∈ V (G ) : (v ,w) ∈ E (G )}.

The in-degree d−(v) is |N−(v)|, and the out-degree d+(v) is |N+(v)|.

Note that d(v) = d−(v) + d+(v).

John Lapinskas Directed Euler walks 7 / 10



Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

As with undirected graphs, the neighbourhood N(v) of a vertex v is the
set of vertices it’s adjacent to, and its degree d(v) is the number of edges
v is contained in. But...

Here every vertex has even degree (namely
degree 2), but there’s no Euler walk!

We define the in-neighbourhood N−(v) and the out-neighbourhood
N+(v) of a vertex v by

N−(v) = {u ∈ V (G ) : (u, v) ∈ E (G )},
N+(v) = {w ∈ V (G ) : (v ,w) ∈ E (G )}.

The in-degree d−(v) is |N−(v)|, and the out-degree d+(v) is |N+(v)|.

Note that d(v) = d−(v) + d+(v).

John Lapinskas Directed Euler walks 7 / 10



Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

As with undirected graphs, the neighbourhood N(v) of a vertex v is the
set of vertices it’s adjacent to, and its degree d(v) is the number of edges
v is contained in. But...

Here every vertex has even degree (namely
degree 2), but there’s no Euler walk!

We define the in-neighbourhood N−(v) and the out-neighbourhood
N+(v) of a vertex v by

N−(v) = {u ∈ V (G ) : (u, v) ∈ E (G )},
N+(v) = {w ∈ V (G ) : (v ,w) ∈ E (G )}.

The in-degree d−(v) is |N−(v)|, and the out-degree d+(v) is |N+(v)|.

Note that d(v) = d−(v) + d+(v).

John Lapinskas Directed Euler walks 7 / 10



Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

As with undirected graphs, the neighbourhood N(v) of a vertex v is the
set of vertices it’s adjacent to, and its degree d(v) is the number of edges
v is contained in. But...

Here every vertex has even degree (namely
degree 2), but there’s no Euler walk!

We define the in-neighbourhood N−(v) and the out-neighbourhood
N+(v) of a vertex v by

N−(v) = {u ∈ V (G ) : (u, v) ∈ E (G )},
N+(v) = {w ∈ V (G ) : (v ,w) ∈ E (G )}.

The in-degree d−(v) is |N−(v)|, and the out-degree d+(v) is |N+(v)|.

Note that d(v) = d−(v) + d+(v).

John Lapinskas Directed Euler walks 7 / 10



Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

As with undirected graphs, the neighbourhood N(v) of a vertex v is the
set of vertices it’s adjacent to, and its degree d(v) is the number of edges
v is contained in. But...

Here every vertex has even degree (namely
degree 2), but there’s no Euler walk!

We define the in-neighbourhood N−(v) and the out-neighbourhood
N+(v) of a vertex v by

N−(v) = {u ∈ V (G ) : (u, v) ∈ E (G )},
N+(v) = {w ∈ V (G ) : (v ,w) ∈ E (G )}.

The in-degree d−(v) is |N−(v)|, and the out-degree d+(v) is |N+(v)|.

Note that d(v) = d−(v) + d+(v).

John Lapinskas Directed Euler walks 7 / 10



Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

The in-degree of v is the number of edges pointing towards v .
The out-degree of v is the number of edges pointing away from v .

Let W = w0 . . .wk be a walk in a digraph G . For any vertex x , W has:

one edge out of x and one edge into x for each time x appears in
{w1, . . . ,wk−1};
one extra edge out of x if x = w0;

one extra edge into x if x = wk .

If W is Euler, it contains d−(x) edges into x and d+(x) edges out of x .

So if x /∈ {w0, wk}, or x = w0 = wk , then d+(x) = d−(x).
If x = w0 ̸= wk , then d+(x) = d−(x) + 1.
And if x = wk ̸= w0, then d−(x) = d+(x) + 1.
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Let W = w0 . . .wk be a walk in a digraph G . For any vertex x , W has:

one edge out of x and one edge into x for each time x appears in
{w1, . . . ,wk−1};

one extra edge out of x if x = w0;

one extra edge into x if x = wk .

If W is Euler, it contains d−(x) edges into x and d+(x) edges out of x .

So if x /∈ {w0, wk}, or x = w0 = wk , then d+(x) = d−(x).
If x = w0 ̸= wk , then d+(x) = d−(x) + 1.
And if x = wk ̸= w0, then d−(x) = d+(x) + 1.
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Ignoring isolated vertices, an undirected graph has an Euler walk iff it is connected and all, or all
but two, of its vertices have even degree.

For digraphs, we think “connected” will become “strongly connected” or “weakly connected”.
What about “even degree”?

The in-degree of v is the number of edges pointing towards v .
The out-degree of v is the number of edges pointing away from v .

We have shown that if W is an Euler walk, for any vertex x , either:

x = w0 = wk and d+(x) = d−(x); or

x /∈ {w0,wk} and d+(x) = d−(x); or

x = w0 ̸= wk and d+(x) = d−(x) + 1; or

x = wk ̸= w0 and d−(x) = d+(x) + 1.

Theorem: Let G be a digraph with no isolated vertices containing an
Euler walk W = w0 . . .wk . Then G is weakly connected and either:

d+(v) = d−(v) for all v ∈ V , and w0 = wk ; or

d−(v) = d+(v) for all v /∈ {w0,wk}, d+(w0) = d−(w0) + 1, and
d−(wk) = d+(wk) + 1. (So also w0 ̸= wk .)
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Theorem: Let G be a digraph with no isolated vertices containing an Euler walk W = w0 . . .wk .
Then G is weakly connected and either:

G is strongly connected, d+(v) = d−(v) for all v ∈ V , and w0 = wk ; or

d−(v) = d+(v) for all v /∈ {w0,wk}, d+(w0) = d−(w0) + 1, and d−(wk ) = d+(wk ) + 1.
(So also w0 ̸= wk .)

As with undirected graphs, this turns out to be sufficient!

Theorem: Let G = (V ,E ) be a digraph with no isolated vertices, and
let u, v ∈ V . Then G has an Euler walk from u to v if and
only if G is weakly connected and either:

(i) u = v and every vertex of G has equal in- and out-degrees; or

(ii) u ̸= v , d+(u) = d−(u) + 1, d−(v) = d+(v) + 1, and every other
vertex of G has equal in- and out-degrees.

It’s surprising that weak connectedness turns out to be good enough!

It turns out that weak connectedness implies strong connectedness when
every vertex has equal in- and out-degrees.
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