Hamilton cycles COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Hamilton cycles

What if instead of using every edge once, we used every vertex once?
A cycle is a walk $W=w_{0} \ldots w_{k}$ with $w_{0}=w_{k}$ and $k \geq 3$, in which every vertex appears at most once except for w_{0} and w_{k} (which appear twice).

A Hamilton cycle is a cycle containing every vertex in the graph. Naturally, they were studied by...

Hamilton cycles

What if instead of using every edge once, we used every vertex once?
A cycle is a walk $W=w_{0} \ldots w_{k}$ with $w_{0}=w_{k}$ and $k \geq 3$, in which every vertex appears at most once except for w_{0} and w_{k} (which appear twice).

A Hamilton cycle is a cycle containing every vertex in the graph. Naturally, they were studied by... Euler, in the context of knights' tours.

Hamilton cycles

What if instead of using every edge once, we used every vertex once?
A cycle is a walk $W=w_{0} \ldots w_{k}$ with $w_{0}=w_{k}$ and $k \geq 3$, in which every vertex appears at most once except for w_{0} and w_{k} (which appear twice).

A Hamilton cycle is a cycle containing every vertex in the graph. Naturally, they were studied by... Euler, in the context of knights' tours. (But then a century later by William Hamilton...)

Hamilton cycles

What if instead of using every edge once, we used every vertex once?
A cycle is a walk $W=w_{0} \ldots w_{k}$ with $w_{0}=w_{k}$ and $k \geq 3$, in which every vertex appears at most once except for w_{0} and w_{k} (which appear twice).
A Hamilton cycle is a cycle containing every vertex in the graph. Naturally, they were studied by... Euler, in the context of knights' tours. (But then a century later by William Hamilton...)

Hamilton actually made and sold a game based on trying to find Hamilton cycles in a dodecahedron!

Perhaps not surprisingly, it didn't sell very well.

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

But in general, they can be very hard to find. If you prove an easy-to-check condition like the one for Euler walks, you stand to win a million dollars!

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

Dirac's theorem

Just because we can't find Hamilton cycles in general doesn't mean we can't find them in special cases...

Dirac's Theorem: Let $n \geq 3$. Then any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex path and repeatedly extend it.

So suppose G contains a k-vertex path $v_{1} \ldots v_{k}$ for some $k \in[n-1]$.
Case 1: $\boldsymbol{k} \leq \boldsymbol{n} / \mathbf{2}$. Then being greedy works! E.g. $n=10$:

In general, $d\left(v_{k}\right) \geq n / 2>\left|\left\{v_{1}, \ldots, v_{k-1}\right\}\right|$, so there's a vertex v_{k+1} adjacent to v_{k} other than v_{1}, \ldots, v_{k-1}. Then $v_{1} \ldots v_{k+1}$ is a path of length $k+1$.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If G contains a k-vertex path with $1 \leq k \leq n / 2$, then G contains a ($k+1$)-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If G contains a k-vertex path with $1 \leq k \leq n / 2$, then G contains a ($k+1$)-vertex path.

Case 2: $\boldsymbol{k}>\boldsymbol{n} / \mathbf{2}$. Suppose G contains a k-vertex path $v_{1} \ldots v_{k}$. Greedy extension may not work... but try anyway!

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If G contains a k-vertex path with $1 \leq k \leq n / 2$, then G contains a $(k+1)$-vertex path.

Case 2: $\boldsymbol{k}>\boldsymbol{n} / \mathbf{2}$. Suppose G contains a k-vertex path $v_{1} \ldots v_{k}$. Greedy extension may not work... but try anyway!

Case 2a: There exists a vertex $v_{k+1} \in N\left(v_{k}\right) \backslash\left\{v_{1}, \ldots, v_{k-1}\right\}$. Then $v_{1} \ldots v_{k+1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If G contains a k-vertex path with $1 \leq k \leq n / 2$, then G contains a $(k+1)$-vertex path.

Case 2: $\boldsymbol{k}>\boldsymbol{n} / \mathbf{2}$. Suppose G contains a k-vertex path $v_{1} \ldots v_{k}$. Greedy extension may not work... but try anyway!
Case 2a: There exists a vertex $v_{k+1} \in N\left(v_{k}\right) \backslash\left\{v_{1}, \ldots, v_{k-1}\right\}$. Then $v_{1} \ldots v_{k+1}$ is a $(k+1)$-vertex path.

Case 2b: There exists a vertex $v_{0} \in N\left(v_{1}\right) \backslash\left\{v_{2}, \ldots, v_{k}\right\}$. Then $v_{0} \ldots v_{k}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If G contains a k-vertex path with $1 \leq k \leq n / 2$, then G contains a $(k+1)$-vertex path.

Case 2: $\boldsymbol{k}>\boldsymbol{n} / \mathbf{2}$. Suppose G contains a k-vertex path $v_{1} \ldots v_{k}$. Greedy extension may not work... but try anyway!

Case 2a: There exists a vertex $v_{k+1} \in N\left(v_{k}\right) \backslash\left\{v_{1}, \ldots, v_{k-1}\right\}$. Then $v_{1} \ldots v_{k+1}$ is a $(k+1)$-vertex path.

Case 2b: There exists a vertex $v_{0} \in N\left(v_{1}\right) \backslash\left\{v_{2}, \ldots, v_{k}\right\}$. Then $v_{0} \ldots v_{k}$ is a $(k+1)$-vertex path.

Case 2c: Both $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$. In this case, we use the fact that greedy extension fails to extend the path in another way.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...
Of course, in general $\left\{v_{1}, v_{k}\right\}$ might not be an edge! But there are lots of other cycles available.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...
Of course, in general $\left\{v_{1}, v_{k}\right\}$ might not be an edge! But there are lots of other cycles available.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.
Never think about graphs without a picture. What does this look like? Say just for $n=8, k=\frac{1}{2} n+1=5$?

So it looks like we should be able to turn our path into a cycle...
Of course, in general $\left\{v_{1}, v_{k}\right\}$ might not be an edge! But there are lots of other cycles available.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.

In general: We seek $v_{i} \in N\left(v_{1}\right)$ such that $v_{i-1} \in N\left(v_{k}\right)$. Then $v_{1} v_{i} \ldots v_{k} v_{i-1} v_{i-2} \ldots v_{1}$ will be a cycle on $\left\{v_{1}, \ldots, v_{k}\right\}$.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.

In general: We seek $v_{i} \in N\left(v_{1}\right)$ such that $v_{i-1} \in N\left(v_{k}\right)$. Then $v_{1} v_{i} \ldots v_{k} v_{i-1} v_{i-2} \ldots v_{1}$ will be a cycle on $\left\{v_{1}, \ldots, v_{k}\right\}$.

There are at least $n / 2$ vertices $v_{i} \in N\left(v_{1}\right)$, hence at least $n / 2$ vertices in $\left\{v_{i-1}: v_{i} \in N\left(v_{1}\right)\right\}$. There are also at least $n / 2$ vertices in $N\left(v_{k}\right)$. Both sets are contained in $\left\{v_{1}, \ldots, v_{k-1}\right\}$, which has size at most $n-1$. So they must intersect.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Let $v_{1} \ldots v_{k}$ be a k-vertex path in G.
We are done unless $N\left(v_{1}\right) \subseteq\left\{v_{2}, \ldots, v_{k}\right\}$ and $N\left(v_{k}\right) \subseteq\left\{v_{1}, \ldots, v_{k-1}\right\}$.

In general: We seek $v_{i} \in N\left(v_{1}\right)$ such that $v_{i-1} \in N\left(v_{k}\right)$. Then $v_{1} v_{i} \ldots v_{k} v_{i-1} v_{i-2} \ldots v_{1}$ will be a cycle on $\left\{v_{1}, \ldots, v_{k}\right\}$.

There are at least $n / 2$ vertices $v_{i} \in N\left(v_{1}\right)$, hence at least $n / 2$ vertices in $\left\{v_{i-1}: v_{i} \in N\left(v_{1}\right)\right\}$. There are also at least $n / 2$ vertices in $N\left(v_{k}\right)$. Both sets are contained in $\left\{v_{1}, \ldots, v_{k-1}\right\}$, which has size at most $n-1$. So they must intersect. This works even when $\boldsymbol{k}=\boldsymbol{n}$.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a ($k+1$)-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path or a k-vertex cycle.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.

So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.

So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.

So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
So suppose G has a cycle $v_{1} \ldots v_{k}$, with $n / 2<k<n$, and let v_{k+1} be an arbitrary vertex not in the cycle.

We have $d\left(v_{k+1}\right) \geq n / 2$, and $\left|\left\{v_{1}, \ldots, v_{k}\right\}\right|>n / 2$, and the graph has n vertices. So v_{k+1} must be adjacent to some v_{i} on the cycle.

Then $v_{k+1} v_{i} \ldots v_{k} v_{1} \ldots v_{i-1}$ is a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
Lemma 3: If $n / 2<k<n$ and G contains a k-vertex cycle, then
G contains a $(k+1)$-vertex path.

Dirac's Theorem: Any n-vertex graph G with minimum degree at least $n / 2$ has a Hamilton cycle.

Idea: Repeatedly extend a k-vertex path in G.
Lemma 1: If $k \leq n / 2$, then G contains a $(k+1)$-vertex path.
Lemma 2: If $k>n / 2$, then G contains either a $(k+1)$-vertex path
or a k-vertex cycle.
Lemma 3: If $n / 2<k<n$ and G contains a k-vertex cycle, then G contains a $(k+1)$-vertex path.

So now by starting with a single-vertex path and repeatedly applying our three Lemmas, we reach an n-vertex path.

Then Lemma 2 turns this into a Hamilton cycle and we're done!
Note this proof gives us a (fairly fast) algorithm for finding a Hamilton cycle when Dirac's theorem applies. This often happens in graph theory!

How good is Dirac's Theorem?

Minimum degree $n / 2$ seems like quite a big thing to ask - can Dirac's theorem be improved on?

How good is Dirac's Theorem?

Minimum degree $n / 2$ seems like quite a big thing to ask - can Dirac's theorem be improved on? In one sense, no. For example:

This graph G certainly has no Hamilton cycle, and has minimum degree $3=\frac{1}{2}|V(G)|-1$. So Dirac's theorem is false for minimum degree $\frac{1}{2} n-1$.

How good is Dirac's Theorem?

Minimum degree $n / 2$ seems like quite a big thing to ask - can Dirac's theorem be improved on? In one sense, no. For example:

This graph G certainly has no Hamilton cycle, and has minimum degree $3=\frac{1}{2}|V(G)|-1$. So Dirac's theorem is false for minimum degree $\frac{1}{2} n-1$.
But there are other ways to improve it. For example, when we do have minimum degree $n / 2$, there's more than just one Hamilton cycle.
In fact, for large graphs, we can find $(n-2) / 8$ disjoint Hamilton cycles, decomposing almost half the graph!
(Proved in 2013-4 by Csaba, Kühn, Lapinskas, Lo, Osthus and Treglown.)

