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Hamilton cycles

What if instead of using every edge once, we used every vertex once?

A cycle is a walk W = w0 . . .wk with w0 = wk and k ≥ 3, in which every
vertex appears at most once except for w0 and wk (which appear twice).

A Hamilton cycle is a cycle containing every vertex in the graph.
Naturally, they were studied by...

Euler, in the context of knights’ tours.
(But then a century later by William Hamilton...)

Hamilton actually made and sold a
game based on trying to find
Hamilton cycles in a dodecahedron!

Perhaps not surprisingly, it didn’t
sell very well.
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Finding Hamilton cycles

In a particular (undirected) graph, Hamilton cycles can be easy to find:

But in general, they can be very hard to find. If you prove an easy-to-check
condition like the one for Euler walks, you stand to win a million dollars!
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Dirac’s theorem

Just because we can’t find Hamilton cycles in general doesn’t mean we
can’t find them in special cases...

Dirac’s Theorem: Let n ≥ 3. Then any n-vertex graph G with minimum
degree at least n/2 has a Hamilton cycle.

Proof: Try to find a long path inductively: start with a trivial one-vertex
path and repeatedly extend it.

So suppose G contains a k-vertex path v1 . . . vk for some k ∈ [n − 1].

Case 1: k ≤ n/2. Then being greedy works! E.g. n = 10:

v1

v2
v3

v4

v5 v6

In general, d(vk) ≥ n/2 > |{v1, . . . , vk−1}|, so there’s a vertex vk+1

adjacent to vk other than v1, . . . , vk−1. Then v1 . . . vk+1 is a path of
length k + 1. ✓
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Dirac’s Theorem: Any n-vertex graph G with minimum degree at least n/2 has a Hamilton
cycle.

Idea: Repeatedly extend a k-vertex path in G .

Lemma 1: If G contains a k-vertex path with 1 ≤ k ≤ n/2, then G contains a (k + 1)-vertex
path. ✓

Case 2: k > n/2. Suppose G contains a k-vertex path v1 . . . vk .
Greedy extension may not work... but try anyway!

Case 2a: There exists a vertex vk+1 ∈ N(vk) \ {v1, . . . , vk−1}.
Then v1 . . . vk+1 is a (k + 1)-vertex path. ✓

Case 2b: There exists a vertex v0 ∈ N(v1) \ {v2, . . . , vk}.
Then v0 . . . vk is a (k + 1)-vertex path. ✓

Case 2c: Both N(v1) ⊆ {v2, . . . , vk} and N(vk) ⊆ {v1, . . . , vk−1}.
In this case, we use the fact that greedy extension fails to extend the path
in another way.
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Dirac’s Theorem: Any n-vertex graph G with minimum degree at least n/2 has a Hamilton
cycle.

Idea: Repeatedly extend a k-vertex path in G .
Lemma 1: If k ≤ n/2, then G contains a (k + 1)-vertex path. ✓

Let v1 . . . vk be a k-vertex path in G .
We are done unless N(v1) ⊆ {v2, . . . , vk} and N(vk ) ⊆ {v1, . . . , vk−1}.

Never think about graphs without a picture. What does this look like?
Say just for n = 8, k = 1

2n + 1 = 5?

v1 v2 v3 v4 v5

So it looks like we should be able to turn our path into a cycle...

Of course, in general {v1, vk} might not be an edge!
But there are lots of other cycles available.
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So suppose G has a cycle v1 . . . vk ,
with n/2 < k < n, and let vk+1 be
an arbitrary vertex not in the cycle.

We have d(vk+1) ≥ n/2, and
|{v1, . . . , vk}| > n/2, and the graph
has n vertices. So vk+1 must be
adjacent to some vi on the cycle.

Then vk+1vi . . . vkv1 . . . vi−1 is a
(k + 1)-vertex path. ✓
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Lemma 1: If k ≤ n/2, then G contains a (k + 1)-vertex path. ✓
Lemma 2: If k > n/2, then G contains either a (k + 1)-vertex path

or a k-vertex cycle. ✓
Lemma 3: If n/2 < k < n and G contains a k-vertex cycle, then

G contains a (k + 1)-vertex path. ✓

So now by starting with a single-vertex path and repeatedly applying our
three Lemmas, we reach an n-vertex path.

Then Lemma 2 turns this into a Hamilton cycle and we’re done!

Note this proof gives us a (fairly fast) algorithm for finding a Hamilton
cycle when Dirac’s theorem applies. This often happens in graph theory!
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How good is Dirac’s Theorem?

Minimum degree n/2 seems like quite a big thing to ask — can Dirac’s
theorem be improved on?

In one sense, no. For example:

This graph G certainly has no Hamilton cycle, and has minimum degree
3 = 1

2 |V (G )| − 1. So Dirac’s theorem is false for minimum degree 1
2n − 1.

But there are other ways to improve it. For example, when we do have
minimum degree n/2, there’s more than just one Hamilton cycle.

In fact, for large graphs, we can find (n − 2)/8 disjoint Hamilton cycles,
decomposing almost half the graph!

(Proved in 2013–4 by Csaba, Kühn, Lapinskas, Lo, Osthus and Treglown.)
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