RS

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas Trees 1/13



Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and
the decisions of comparison-based sorting algorithms.

In this course, we will think of trees as examples of graphs.
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In COMS10007, you used (rooted) trees to model heaps, recursion, and
the decisions of comparison-based sorting algorithms.

In this course, we will think of trees as examples of graphs.

We define a forest to be a graph which contains no cycles,
and a tree to be a connected graph with no cycles.

(So the components of a forest are trees, and all trees are forests!)

Forest Tree (and forest) | Neither tree nor forest
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A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.
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Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence!

Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is
joined by a unique path uTv in T.
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.. .. u v
This is not a coincidence!

Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is
joined by a unique path uTv in T.

Proof: T is connected, so there is a path P; = xg...xx from u to v.
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John Lapinskas Trees

3/13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence!

Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is
joined by a unique path uTv in T.

Proof: T is connected, so there is a path P; = xg...xx from u to v.
Suppose there is another path P> = yy... yx from u to v.

John Lapinskas Trees

3/13



A tree is a connected graph with no cycles.
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Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is
joined by a unique path uTv in T.

Proof: T is connected, so there is a path P; = xg...xx from u to v.
Suppose there is another path P> = yy... yx from u to v.

Then P; and P> must diverge from each other and come back together.

John Lapinskas Trees 3/13



A tree is a connected graph with no cycles.

X1 =Y
Notice how any edge we add to the tree p. .
from the last slide forms a cycle. 1 A
This is not a coincidencel! u \\\ v
Py s

)
Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is

joined by a unique path uTv in T.

Proof: T is connected, so there is a path P; = xg...xx from u to v.
Suppose there is another path P> = yy... yx from u to v.

Then P; and P> must diverge from each other and come back together.

Let / = min{i: x; # y;} — 1 be the point of divergence.
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Lemma: If T = (V,E) is a tree, then any pair of vertices u,v € V is
joined by a unique path uTv in T.

Proof: T is connected, so there is a path P; = xg...xx from u to v.
Suppose there is another path P> = yy... yx from u to v.

Then P; and P> must diverge from each other and come back together.
Let / = min{i: x; # y;} — 1 be the point of divergence.
Let J=min{i > I: x; € {y1,...,yk}} be the point of remerging.
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A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.

Why are the directions consistent?

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.
Why are the directions consistent?

r=a
Suppose some path P, directs a — b.

And suppose b is also on another path P,,.

John Lapinskas Trees 4/13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges.

Proof: We start by showing how to turn a tree T = (V/, E) into a rooted
tree, like those you worked with last year.

Let r € V be arbitrary — this will be the root. Every vertex v # r has a
unique path P, from r to v by the lemma. Direct its edges from r to v.
Why are the directions consistent?

r=a
Suppose some path P, directs a — b.

And suppose b is also on another path P,,.

b Then both P, and P,, must start with Pp,
since Py is the unique path from r to b.
v w So P, also directs a — b. v
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A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path. O
Lemma 2: Any n-vertex tree T = (V/, E) has n — 1 edges.

Proof idea: Take an arbitrary root r € V. For all vertices v, let P, be the unique path from
r to v. Direct T's edges along these paths. v
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has in-degree 0.
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Lemma 1: Any pair of vertices in a tree is joined by a unique path. O
Lemma 2: Any n-vertex tree T = (V/, E) has n — 1 edges.

Proof idea: Take an arbitrary root r € V. For all vertices v, let P, be the unique path from
r to v. Direct T's edges along these paths. v

Because these paths are unique, every
vertex other than r has in-degree 1, and r
has in-degree 0.

So by the directed handshake lemma:
El=Y,evd (v)=n—1. =

Bonus: We also just defined rooted trees in terms of graphs.
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A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path. O
Lemma 2: Any n-vertex tree has n — 1 edges. O

We root a tree T = (V,E) at r € V as follows. For all vertices v # r, let P, be the unique
path from r to v. Then direct each P, from r to v.
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has depth 3.

In any tree: a leaf is a degree-1 vertex.
In a rooted tree: The root cannot be a leaf, even if it has degree 1.
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A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has n — 1 edges.

A leaf is a degree-1 vertex.

Lemma 3: Any n-vertex tree T = (V/, E) with n > 2 has at least 2 leaves.
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A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path. O
Lemma 2: Any n-vertex tree has n — 1 edges. O
A leaf is a degree-1 vertex.

Lemma 3: Any n-vertex tree T = (V/, E) with n > 2 has at least 2 leaves.

Proof: Let x be the number of leaves in T.
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Plugging this in gives [E|=n—1= 3 ZVEV d(v)>n—3.
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The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path. O

Lemma 2: Any n-vertex tree has n — 1 edges. O

When you're actually working with trees, it's good to have one single result
that tells you that all the “obvious” things are true. This is that result.

Lemma: The following are equivalent for an n-vertex graph T = (V, E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n—1 edges and is connected;
(C) T has n—1 edges and has no cycles;
(D) T has a unique path between any pair of vertices.
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We've already proved (A)= (D) (Lemma 1)...
as well as (A) = (B) and (A) = (C) (Lemma 2).
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Lemma: The following are equivalent for an n-vertex graph T = (V, E):
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has n—1 edges and is connected;
(C) T has n—1 edges and has no cycles;
(

D) T has a unique path between any pair of vertices.

(A) = (B), (C) and (D): v

(D)= (A): T has a path between any pair of vertices, so it's connected.
And on any cycle v . .. vk, there are two different paths from vy to v:
@ the path vp...v; and

o the edge vpvg.
So T has no cycles. v
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(C) = (A): Suppose T has no cycles and components Cy, ..., C,.

Each of these components has no cycles, and is connected, so it's a tree.
So by (A)=-(B) (or Lemma 2), each C; has |V(C;)| — 1 edges.
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(A)=(B), (C) and (D): v (C) and (D) = (A):

(B) = (A): We will need to use:

Claim: If T = (V,E) is connected, and e € E is on a cycle,

then T — e is connected.

Proof from Claim: Suppose T is not a tree, so it has a cycle.

We form a new graph T’ by repeatedly removing edges from cycles in T

(in arbitrary order) until no more cycles remain.

Then T has no cycles, and the Claim implies it's connected, so it's a tree.

So by (A)=-(B) (or Lemma 2), T’ has n — 1 edges.

So T must have had more than n — 1 edges — a contradiction.
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Claim: If T = (V, E) is connected, and e € E is on a cycle, then T — e is connected.
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For all a, b € V, we must find a path from ato bin T —e.

Let P=Xxp...x, be a path from ato bin T.
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Lemma: The following are equivalent for an n-vertex graph T = (V, E):
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has n—1 edges and is connected;
(C) T has n—1 edges and has no cycles;
(

D) T has a unique path between any pair of vertices. O

Our reward for proving this lemma is:
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D) T has a unique path between any pair of vertices. O

Our reward for proving this lemma is: we never have to think about basic
tree properties in this level of detail ever again. (Except on the exam!)
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Lemma: The following are equivalent for an n-vertex graph T = (V, E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n—1 edges and is connected,;

(C) T has n—1 edges and has no cycles;

(D) T has a unique path between any pair of vertices. O

Our reward for proving this lemma is: we never have to think about basic
tree properties in this level of detail ever again. (Except on the exam!)

And there was much rejoicing.
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