Trees
 COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and the decisions of comparison-based sorting algorithms.
In this course, we will think of trees as examples of graphs.

Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and the decisions of comparison-based sorting algorithms.
In this course, we will think of trees as examples of graphs.
We define a forest to be a graph which contains no cycles, and a tree to be a connected graph with no cycles.
(So the components of a forest are trees, and all trees are forests!)

Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and the decisions of comparison-based sorting algorithms.
In this course, we will think of trees as examples of graphs.
We define a forest to be a graph which contains no cycles, and a tree to be a connected graph with no cycles.
(So the components of a forest are trees, and all trees are forests!)

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

A tree is a connected graph with no cycles.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Then P_{1} and P_{2} must diverge from each other and come back together.

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

$$
x_{l}=y_{l}
$$

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Then P_{1} and P_{2} must diverge from each other and come back together. Let $I=\min \left\{i: x_{i} \neq y_{i}\right\}-1$ be the point of divergence.

$$
x_{l}=y_{l}
$$

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Then P_{1} and P_{2} must diverge from each other and come back together. Let $I=\min \left\{i: x_{i} \neq y_{i}\right\}-1$ be the point of divergence.
Let $J=\min \left\{i>I: x_{i} \in\left\{y_{l}, \ldots, y_{k}\right\}\right\}$ be the point of remerging.

$$
x_{l}=y_{l}
$$

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Then P_{1} and P_{2} must diverge from each other and come back together. Let $I=\min \left\{i: x_{i} \neq y_{i}\right\}-1$ be the point of divergence.
Let $J=\min \left\{i>I: x_{i} \in\left\{y_{l}, \ldots, y_{k}\right\}\right\}$ be the point of remerging.
Let K be the corresponding point on P_{2}, so $y_{K}=x_{J}$.

$$
x_{I}=y_{I}
$$

Notice how any edge we add to the tree from the last slide forms a cycle.

This is not a coincidence!

Lemma: If $T=(V, E)$ is a tree, then any pair of vertices $u, v \in V$ is joined by a unique path $u T v$ in T.

Proof: T is connected, so there is a path $P_{1}=x_{0} \ldots x_{k}$ from u to v. Suppose there is another path $P_{2}=y_{0} \ldots y_{k}$ from u to v.

Then P_{1} and P_{2} must diverge from each other and come back together. Let $I=\min \left\{i: x_{i} \neq y_{i}\right\}-1$ be the point of divergence.
Let $J=\min \left\{i>I: x_{i} \in\left\{y_{l}, \ldots, y_{k}\right\}\right\}$ be the point of remerging.
Let K be the corresponding point on P_{2}, so $y_{K}=x_{J}$.
Then $x_{I} x_{I+1} \ldots x_{J} y_{K-1} y_{K-2} \ldots y_{I}$ is a cycle, so T is not a tree.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

Why are the directions consistent?

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

Why are the directions consistent?

Suppose some path P_{v} directs $a \rightarrow b$. And suppose b is also on another path P_{w}.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
Proof: We start by showing how to turn a tree $T=(V, E)$ into a rooted tree, like those you worked with last year.

Let $r \in V$ be arbitrary - this will be the root. Every vertex $v \neq r$ has a unique path P_{v} from r to v by the lemma. Direct its edges from r to v.

Why are the directions consistent?

Suppose some path P_{v} directs $a \rightarrow b$. And suppose b is also on another path P_{w}. Then both P_{v} and P_{w} must start with P_{b}, since P_{b} is the unique path from r to b. So P_{w} also directs $a \rightarrow b$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree $T=(V, E)$ has $n-1$ edges.
Proof idea: Take an arbitrary root $r \in V$. For all vertices v, let P_{v} be the unique path from r to v. Direct T 's edges along these paths.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree $T=(V, E)$ has $n-1$ edges.
Proof idea: Take an arbitrary root $r \in V$. For all vertices v, let P_{v} be the unique path from r to v. Direct T 's edges along these paths.

Because these paths are unique, every vertex other than r has in-degree 1 , and r has in-degree 0.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree $T=(V, E)$ has $n-1$ edges.
Proof idea: Take an arbitrary root $r \in V$. For all vertices v, let P_{v} be the unique path from r to v. Direct T 's edges along these paths.

Because these paths are unique, every vertex other than r has in-degree 1 , and r has in-degree 0.

So by the directed handshake lemma:
$|E|=\sum_{v \in V} d^{-}(v)=n-1$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree $T=(V, E)$ has $n-1$ edges.
Proof idea: Take an arbitrary root $r \in V$. For all vertices v, let P_{v} be the unique path from r to v. Direct T 's edges along these paths.

Because these paths are unique, every vertex other than r has in-degree 1 , and r has in-degree 0.

So by the directed handshake lemma:
$|E|=\sum_{v \in V} d^{-}(v)=n-1$.
Bonus: We also just defined rooted trees in terms of graphs.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.
- The depth of T is $\max \left\{i: L_{i} \neq \emptyset\right\}$, e.g. this tree has depth 3 .

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.
- The depth of T is $\max \left\{i: L_{i} \neq \emptyset\right\}$, e.g. this tree has depth 3.

In any tree: a leaf is a degree- 1 vertex.
In a rooted tree: The root cannot be a leaf, even if it has degree 1 .

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.
- The depth of T is $\max \left\{i: L_{i} \neq \emptyset\right\}$, e.g. this tree has depth 3 .

In any tree: a leaf is a degree- 1 vertex.
In a rooted tree: The root cannot be a leaf, even if it has degree 1 .

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
We root a tree $T=(V, E)$ at $r \in V$ as follows. For all vertices $v \neq r$, let P_{v} be the unique path from r to v. Then direct each P_{v} from r to v.

In a rooted tree with root r :

- u is an ancestor of v (or v is a descendant of u) if u is on P_{v}.
- u is the parent of v (or v is a child of u) if $u \in N^{-}(v)$.
- The first level L_{0} of T is $\{r\}$, and $L_{i+1}=N^{+}\left(L_{i}\right)$.
- The depth of T is $\max \left\{i: L_{i} \neq \emptyset\right\}$, e.g. this tree has depth 3 .

In any tree: a leaf is a degree- 1 vertex.
In a rooted tree: The root cannot be a leaf, even if it has degree 1 .
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree-1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree-1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree-1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.
By the handshaking lemma, $|E|=\frac{1}{2} \sum_{v \in V} d(v)$. Also, $|E|=n-1$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree-1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.
By the handshaking lemma, $|E|=\frac{1}{2} \sum_{v \in V} d(v)$. Also, $|E|=n-1$.
Since T is connected and $n \geq 2$, every vertex has degree at least 1 .

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree- 1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.
By the handshaking lemma, $|E|=\frac{1}{2} \sum_{v \in V} d(v)$. Also, $|E|=n-1$.
Since T is connected and $n \geq 2$, every vertex has degree at least 1 .
So all non-leaves have degree at least 2 , and $\sum_{v \in V} d(v) \geq 2(n-x)+x$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree- 1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.
By the handshaking lemma, $|E|=\frac{1}{2} \sum_{v \in V} d(v)$. Also, $|E|=n-1$.
Since T is connected and $n \geq 2$, every vertex has degree at least 1 .
So all non-leaves have degree at least 2 , and $\sum_{v \in V} d(v) \geq 2(n-x)+x$.
Plugging this in gives $|E|=n-1=\frac{1}{2} \sum_{v \in V} d(v) \geq n-\frac{x}{2}$.

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
A leaf is a degree- 1 vertex.
Lemma 3: Any n-vertex tree $T=(V, E)$ with $n \geq 2$ has at least 2 leaves.
Proof: Let x be the number of leaves in T.
By the handshaking lemma, $|E|=\frac{1}{2} \sum_{v \in V} d(v)$. Also, $|E|=n-1$.
Since T is connected and $n \geq 2$, every vertex has degree at least 1 .
So all non-leaves have degree at least 2 , and $\sum_{v \in V} d(v) \geq 2(n-x)+x$.
Plugging this in gives $|E|=n-1=\frac{1}{2} \sum_{v \in V} d(v) \geq n-\frac{x}{2}$.
Solving for x gives $x \geq 2$, so we're done!

The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.

The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
When you're actually working with trees, it's good to have one single result that tells you that all the "obvious" things are true. This is that result.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
When you're actually working with trees, it's good to have one single result that tells you that all the "obvious" things are true. This is that result.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

We've already proved $(A) \Rightarrow(D)$ (Lemma 1$) \ldots$

The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.
Lemma 1: Any pair of vertices in a tree is joined by a unique path.
Lemma 2: Any n-vertex tree has $n-1$ edges.
When you're actually working with trees, it's good to have one single result that tells you that all the "obvious" things are true. This is that result.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

We've already proved $(A) \Rightarrow(D)$ (Lemma 1)...

$$
\text { as well as }(A) \Rightarrow(B) \text { and }(A) \Rightarrow(C) \text { (Lemma 2). }
$$

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$

$(D) \Rightarrow(A):$

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$
$(D) \Rightarrow(A): T$ has a path between any pair of vertices, so it's connected.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$
$(\mathrm{D}) \Rightarrow(\mathrm{A}): T$ has a path between any pair of vertices, so it's connected. And on any cycle $v_{0} \ldots v_{k}$, there are two different paths from v_{0} to v_{k} :

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$
$(D) \Rightarrow(A): T$ has a path between any pair of vertices, so it's connected.
And on any cycle $v_{0} \ldots v_{k}$, there are two different paths from v_{0} to v_{k} :

- the path $v_{0} \ldots v_{k}$; and

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$
$(D) \Rightarrow(A): T$ has a path between any pair of vertices, so it's connected.
And on any cycle $v_{0} \ldots v_{k}$, there are two different paths from v_{0} to v_{k} :

- the path $v_{0} \ldots v_{k}$; and
- the edge $v_{0} v_{k}$.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and $(D):$
$(\mathrm{D}) \Rightarrow(\mathrm{A}): T$ has a path between any pair of vertices, so it's connected.
And on any cycle $v_{0} \ldots v_{k}$, there are two different paths from v_{0} to v_{k} :

- the path $v_{0} \ldots v_{k}$; and
- the edge $v_{0} v_{k}$.

So T has no cycles.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D) :
$(D) \Rightarrow(A):$

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
$(D) \Rightarrow(A):$
$(\mathrm{C}) \Rightarrow(\mathbf{A})$: Suppose T has no cycles and components C_{1}, \ldots, C_{r}.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
$(D) \Rightarrow(A)$:
$(\mathrm{C}) \Rightarrow(\mathrm{A})$: Suppose T has no cycles and components C_{1}, \ldots, C_{r}.
Each of these components has no cycles, and is connected, so it's a tree. So by $(\mathrm{A}) \Rightarrow(\mathrm{B})$ (or Lemma 2), each C_{i} has $\left|V\left(C_{i}\right)\right|-1$ edges.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B)$, (
(C) and (D):
$\checkmark \quad(\mathrm{D}) \Rightarrow(\mathrm{A}):$
$(\mathrm{C}) \Rightarrow(\mathrm{A})$: Suppose T has no cycles and components C_{1}, \ldots, C_{r}.
Each of these components has no cycles, and is connected, so it's a tree. So by $(\mathrm{A}) \Rightarrow(\mathrm{B})$ (or Lemma 2), each C_{i} has $\left|V\left(C_{i}\right)\right|-1$ edges.
Every edge of T is in some C_{i}, so $|E|=\sum_{i}\left(\left|V\left(C_{i}\right)\right|-1\right)=n-r$. But we know $|E|=n-1$, so we must have $r=1$.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
(C) and (D) $\Rightarrow(A)$:

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
(C) and $(D) \Rightarrow(A)$:
$(B) \Rightarrow(A):$ We will need to use:
Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
(C) and $(D) \Rightarrow(A)$:
$(B) \Rightarrow(A):$ We will need to use:
Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.

Proof from Claim: Suppose T is not a tree, so it has a cycle.
We form a new graph T^{\prime} by repeatedly removing edges from cycles in T (in arbitrary order) until no more cycles remain.

Then T^{\prime} has no cycles, and the Claim implies it's connected, so it's a tree. So by $(A) \Rightarrow(B)$ (or Lemma 2), T^{\prime} has $n-1$ edges.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.
$(A) \Rightarrow(B),(C)$ and (D):
(C) and $(D) \Rightarrow(A)$:
$(B) \Rightarrow(A):$ We will need to use:
Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.

Proof from Claim: Suppose T is not a tree, so it has a cycle.
We form a new graph T^{\prime} by repeatedly removing edges from cycles in T (in arbitrary order) until no more cycles remain.

Then T^{\prime} has no cycles, and the Claim implies it's connected, so it's a tree. So by $(A) \Rightarrow(B)$ (or Lemma 2), T^{\prime} has $n-1$ edges.

So T must have had more than $n-1$ edges - a contradiction.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Then $x_{0} \ldots x_{I} y_{1} \ldots y_{\ell} x_{I+2} \ldots x_{k}$ is a walk from a to b in $T-e$. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Then $x_{0} \ldots x_{1} y_{1} \ldots y_{\ell} x_{I+2} \ldots x_{k}$ is a walk from a to b in $T-e$. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Then $x_{0} \ldots x_{1} y_{1} \ldots y_{\ell} x_{I+2} \ldots x_{k}$ is a walk from a to b in $T-e$. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Then $x_{0} \ldots x_{l} y_{1} \ldots y_{\ell} x_{I+2} \ldots x_{k}$ is a walk from a to b in $T-e$. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

Claim: If $T=(V, E)$ is connected, and $e \in E$ is on a cycle, then $T-e$ is connected.
For all $a, b \in V$, we must find a path from a to b in $T-e$.
Let $P=x_{0} \ldots x_{k}$ be a path from a to b in T.
If \boldsymbol{e} is not in \boldsymbol{P} : Then P is the path we want.
If \boldsymbol{e} is in \boldsymbol{P} : Write $e=\left\{x_{I}, x_{I+1}\right\}$. Let $C=y_{0} \ldots y_{\ell}$ be a cycle in T containing e - without loss of generality we can take $y_{0}=x_{I}$ and $y_{\ell}=x_{I+1}$.

Then $x_{0} \ldots x_{I} y_{1} \ldots y_{\ell} x_{I+2} \ldots x_{k}$ is a walk from a to b in $T-e$. Any walk from a to b contains a path from a to b (see quiz 2), so we're done.

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

Our reward for proving this lemma is:

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

Our reward for proving this lemma is: we never have to think about basic tree properties in this level of detail ever again. (Except on the exam!)

Lemma: The following are equivalent for an n-vertex graph $T=(V, E)$:
(A) T is connected and has no cycles, i.e. is a tree;
(B) T has $n-1$ edges and is connected;
(C) T has $n-1$ edges and has no cycles;
(D) T has a unique path between any pair of vertices.

Our reward for proving this lemma is: we never have to think about basic tree properties in this level of detail ever again. (Except on the exam!)

And there was much rejoicing.

