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Trees

In COMS10007, you used (rooted) trees to model heaps, recursion, and
the decisions of comparison-based sorting algorithms.

In this course, we will think of trees as examples of graphs.

We define a forest to be a graph which contains no cycles,
and a tree to be a connected graph with no cycles.

(So the components of a forest are trees, and all trees are forests!)

Forest Tree (and forest) Neither tree nor forest
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A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence!

u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence!

u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .

Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .

Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.

Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.

Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u

v

P1

P2

xI = yI

v = xJ

= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.

Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u

v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.

John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Notice how any edge we add to the tree
from the last slide forms a cycle.

This is not a coincidence! u

v

P1

P2

xI = yI

v = xJ
= yK

Lemma: If T = (V ,E ) is a tree, then any pair of vertices u, v ∈ V is
joined by a unique path uTv in T .

Proof: T is connected, so there is a path P1 = x0 . . . xk from u to v .
Suppose there is another path P2 = y0 . . . yk from u to v .

Then P1 and P2 must diverge from each other and come back together.
Let I = min{i : xi ̸= yi} − 1 be the point of divergence.
Let J = min{i > I : xi ∈ {yI , . . . , yk}} be the point of remerging.
Let K be the corresponding point on P2, so yK = xJ .

Then xI xI+1 . . . xJyK−1yK−2 . . . yI is a cycle, so T is not a tree.
John Lapinskas Trees 3 / 13



A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree has n − 1 edges.

Proof: We start by showing how to turn a tree T = (V ,E ) into a rooted
tree, like those you worked with last year.

Let r ∈ V be arbitrary — this will be the root. Every vertex v ̸= r has a
unique path Pv from r to v by the lemma. Direct its edges from r to v .

r

r = a

b

v w

Why are the directions consistent?

Suppose some path Pv directs a → b.
And suppose b is also on another path Pw .

Then both Pv and Pw must start with Pb,
since Pb is the unique path from r to b.
So Pw also directs a → b. ✓
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A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree T = (V ,E) has n − 1 edges.

Proof idea: Take an arbitrary root r ∈ V . For all vertices v , let Pv be the unique path from
r to v . Direct T ’s edges along these paths. ✓

r

Because these paths are unique, every
vertex other than r has in-degree 1, and r
has in-degree 0.

So by the directed handshake lemma:
|E | =

∑
v∈V d−(v) = n − 1.

Bonus: We also just defined rooted trees in terms of graphs.
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A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree has n − 1 edges.

We root a tree T = (V ,E) at r ∈ V as follows. For all vertices v ̸= r , let Pv be the unique
path from r to v . Then direct each Pv from r to v .

r

v

u

v

u

L0

L1

L2

L3

In a rooted tree with root r :

u is an ancestor of v (or v is a descendant of u)
if u is on Pv .

u is the parent of v (or v is a child of u) if
u ∈ N−(v).

The first level L0 of T is {r}, and Li+1 = N+(Li ).

The depth of T is max{i : Li ̸= ∅}, e.g. this tree
has depth 3.

In any tree: a leaf is a degree-1 vertex.
In a rooted tree: The root cannot be a leaf, even if it has degree 1.

Lemma 3: Any n-vertex tree T = (V ,E ) with n ≥ 2 has at least 2 leaves.
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A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree has n − 1 edges.

A leaf is a degree-1 vertex.

Lemma 3: Any n-vertex tree T = (V ,E) with n ≥ 2 has at least 2 leaves.

Proof: Let x be the number of leaves in T .

By the handshaking lemma, |E | = 1
2

∑
v∈V d(v). Also, |E | = n − 1.

Since T is connected and n ≥ 2, every vertex has degree at least 1.

So all non-leaves have degree at least 2, and
∑

v∈V d(v) ≥ 2(n − x) + x .

Plugging this in gives |E | = n − 1 = 1
2

∑
v∈V d(v) ≥ n − x

2 .

Solving for x gives x ≥ 2, so we’re done!
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The Fundamental Lemma of Trees

A tree is a connected graph with no cycles.

Lemma 1: Any pair of vertices in a tree is joined by a unique path.

Lemma 2: Any n-vertex tree has n − 1 edges.

When you’re actually working with trees, it’s good to have one single result
that tells you that all the “obvious” things are true. This is that result.

Lemma: The following are equivalent for an n-vertex graph T = (V ,E ):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

We’ve already proved (A)⇒ (D) (Lemma 1)...
as well as (A)⇒ (B) and (A)⇒ (C) (Lemma 2).
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Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓

(D)⇒ (A):

T has a path between any pair of vertices, so it’s connected.

And on any cycle v0 . . . vk , there are two different paths from v0 to vk :

v2

v3

v4v5

v6

v7

v0 v1
the path v0 . . . vk ; and

the edge v0vk .

So T has no cycles. ✓
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Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓ (D)⇒ (A): ✓

(C)⇒ (A): Suppose T has no cycles and components C1, . . . ,Cr .

Each of these components has no cycles, and is connected, so it’s a tree.
So by (A)⇒ (B) (or Lemma 2), each Ci has |V (Ci )| − 1 edges.

Every edge of T is in some Ci , so |E | =
∑

i (|V (Ci )| − 1) = n − r .
But we know |E | = n − 1, so we must have r = 1. ✓
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Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓ (D)⇒ (A): ✓

(C)⇒ (A): Suppose T has no cycles and components C1, . . . ,Cr .

Each of these components has no cycles, and is connected, so it’s a tree.
So by (A)⇒ (B) (or Lemma 2), each Ci has |V (Ci )| − 1 edges.

Every edge of T is in some Ci , so |E | =
∑

i (|V (Ci )| − 1) = n − r .
But we know |E | = n − 1, so we must have r = 1. ✓

John Lapinskas Trees 10 / 13



Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓ (D)⇒ (A): ✓

(C)⇒ (A): Suppose T has no cycles and components C1, . . . ,Cr .

Each of these components has no cycles, and is connected, so it’s a tree.
So by (A)⇒ (B) (or Lemma 2), each Ci has |V (Ci )| − 1 edges.

Every edge of T is in some Ci , so |E | =
∑

i (|V (Ci )| − 1) = n − r .
But we know |E | = n − 1, so we must have r = 1. ✓

John Lapinskas Trees 10 / 13



Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓ (D)⇒ (A): ✓

(C)⇒ (A): Suppose T has no cycles and components C1, . . . ,Cr .

Each of these components has no cycles, and is connected, so it’s a tree.
So by (A)⇒ (B) (or Lemma 2), each Ci has |V (Ci )| − 1 edges.

Every edge of T is in some Ci , so |E | =
∑

i (|V (Ci )| − 1) = n − r .
But we know |E | = n − 1, so we must have r = 1. ✓

John Lapinskas Trees 10 / 13



Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

(A)⇒ (B), (C) and (D): ✓ (C) and (D)⇒ (A): ✓

(B)⇒ (A): We will need to use:

Claim: If T = (V ,E ) is connected, and e ∈ E is on a cycle,
then T − e is connected.

Proof from Claim: Suppose T is not a tree, so it has a cycle.

We form a new graph T ′ by repeatedly removing edges from cycles in T
(in arbitrary order) until no more cycles remain.

Then T ′ has no cycles, and the Claim implies it’s connected, so it’s a tree.
So by (A)⇒ (B) (or Lemma 2), T ′ has n − 1 edges.

So T must have had more than n − 1 edges — a contradiction.
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Claim: If T = (V ,E) is connected, and e ∈ E is on a cycle, then T − e is connected.

For all a, b ∈ V , we must find a path from a to b in T − e.

Let P = x0 . . . xk be a path from a to b in T .

If e is not in P: Then P is the path we want. ✓

If e is in P: Write e = {xI , xI+1}. Let C = y0 . . . yℓ be a cycle in T
containing e — without loss of generality we can take y0 = xI and
yℓ = xI+1.

C
a = x0 b = xk

xI = y0 xI+1 = yℓ

Then is a walk from a to b in T − e. Any walk from a to b contains a
from a to b (see quiz 2), so we’re done. ✓
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Lemma: The following are equivalent for an n-vertex graph T = (V ,E):

(A) T is connected and has no cycles, i.e. is a tree;

(B) T has n − 1 edges and is connected;

(C) T has n − 1 edges and has no cycles;

(D) T has a unique path between any pair of vertices.

Our reward for proving this lemma is:

we never have to think about basic
tree properties in this level of detail ever again. (Except on the exam!)

And there was much rejoicing.
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