Graph representations COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Adjacency matrices

I haven't talked at all about running times of graph algorithms...
because a lot depends on how the input graphs are stored.
One popular way to store a graph $G=(V, E)$ is an adjacency matrix:

$$
V=:\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad A_{i, j}= \begin{cases}1 & \text { if there is an edge from } v_{i} \text { to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Adjacency matrices

I haven't talked at all about running times of graph algorithms...
because a lot depends on how the input graphs are stored.
One popular way to store a graph $G=(V, E)$ is an adjacency matrix:

$$
V=:\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad A_{i, j}= \begin{cases}1 & \text { if there is an edge from } v_{i} \text { to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Adjacency matrices

I haven't talked at all about running times of graph algorithms...
because a lot depends on how the input graphs are stored.
One popular way to store a graph $G=(V, E)$ is an adjacency matrix:

$$
V=:\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, \quad A_{i, j}= \begin{cases}1 & \text { if there is an edge from } v_{i} \text { to } v_{j} \\ 0 & \text { otherwise. }\end{cases}
$$

Storing the matrix as a 2 D array takes $\boldsymbol{\Theta}\left(|\boldsymbol{V}|^{2}\right)$ space. An adjacency query ("Is $(u, v) \in E$?") takes $\boldsymbol{\Theta}(1)$ time. A neighbourhood query ("What is $N^{+}(u)$?") takes $\boldsymbol{\Theta}(|\boldsymbol{V}|)$ time.

Adjacency lists

Another way is adjacency list format.

Here we store an array of $|V|$ linked lists L_{1}, \ldots, L_{n}, where L_{i} contains the list of vertices v_{j} with $\left(v_{i}, v_{j}\right) \in E$ (in some order):

Adjacency lists

Another way is adjacency list format.

Here we store an array of $|V|$ linked lists L_{1}, \ldots, L_{n}, where L_{i} contains the list of vertices v_{j} with $\left(v_{i}, v_{j}\right) \in E$ (in some order):

Adjacency lists

Another way is adjacency list format.

Here we store an array of $|V|$ linked lists L_{1}, \ldots, L_{n}, where L_{i} contains the list of vertices v_{j} with $\left(v_{i}, v_{j}\right) \in E$ (in some order):

Storing the array of lists takes $\boldsymbol{\Theta}(|\boldsymbol{V}|+|\boldsymbol{E}|)$ space. An adjacency query ("Is $(u, v) \in E$?") takes $\boldsymbol{\Theta}\left(\boldsymbol{d}^{+}(\boldsymbol{u})\right)$ time. A neighbourhood query ("What is $N^{+}(u)$?") takes $\boldsymbol{\Theta}\left(\boldsymbol{d}^{+}(u)\right)$ time.

Matrices or lists?

Advantages of matrices	Advantages of lists
Fast adjacency queries for all graphs	Fast degree queries for sparse graphs
Can sometimes use linear algebra for	Low space requirement for sparse
fast algorithms (see problem sheet)	graphs Can drop adjacency queries to $O(1)$ expected time with hash tables (c.f. Advanced Algorithms next year!)

In practice, we normally use adjacency lists with hash tables over adjacency matrices or vanilla adjacency lists... unless we aren't actually storing the graph at all!

Implicit graphs

A key ingredient of Google's search algorithm is PageRank: a rough indicator of the "importance" of a given site on the Internet, computed by looking at incoming and outgoing links.

Calculating PageRank is a graph problem:

Google really doesn't want to have to store the graph.
But they can easily list neighbours of a site v in $O(d(v))$ time... so they can have the same interface that adjacency lists would provide, but without actually storing anything!

Situations like this, where the graph is only stored implicitly, are why we really care about the adjacency list and matrix models.

Loops and multiple edges

Sometimes it's useful to consider graphs with:

Loops

connecting vertices to themselves;

Multiple edges

between one pair of vertices.

These are called multigraphs.
Results and algorithms for graphs usually carry over to multigraphs unchanged, but they often make things harder to visualise and write.

And loops and multiple edges are rarely necessary.
So in this course we will only consider standard (a.k.a. simple) graphs, without loops or multiple edges.

