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Adjacency matrices

I haven’t talked at all about running times of graph algorithms...

because a lot depends on how the input graphs are stored.

One popular way to store a graph G = (V ,E ) is an adjacency matrix:

V =: {v1, v2, . . . , vn}, Ai ,j =

{
1 if there is an edge from vi to vj ,

0 otherwise.

v1 v2

v3

v4

v5


0 1 0 0 0
1 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0


v1 v2

v3

v4

v5


0 1 0 0 0
1 0 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0



Storing the matrix as a 2D array takes Θ(|V |2) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(1) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(|V |) time.
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Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.

An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.

A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Adjacency lists

Another way is adjacency list format.

Here we store an array of |V | linked lists L1, . . . , Ln, where Li contains the
list of vertices vj with (vi , vj) ∈ E (in some order):

v1 v2

v3

v4

v5

1 2

2 3 1 4

3 2 5

4 5 2

5 3 4

v1 v2

v3

v4

v5

1 2

2 4 3 1

3 5

4 5

5

Storing the array of lists takes Θ(|V | + |E |) space.
An adjacency query (“Is (u, v) ∈ E?”) takes Θ(d+(u)) time.
A neighbourhood query (“What is N+(u)?”) takes Θ(d+(u)) time.

John Lapinskas Graph representations 3 / 6



Matrices or lists?

Advantages of matrices Advantages of lists
Fast adjacency queries for all graphs Fast degree queries for sparse graphs

Can sometimes use linear algebra for Low space requirement for sparse
fast algorithms (see problem sheet) graphs

Can drop adjacency queries to O(1)
expected time with hash tables
(c.f. Advanced Algorithms next year!)

In practice, we normally use adjacency lists with hash tables over
adjacency matrices or vanilla adjacency lists... unless we aren’t actually
storing the graph at all!
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Implicit graphs

A key ingredient of Google’s search algorithm is PageRank: a rough indicator of
the “importance” of a given site on the Internet, computed by looking at
incoming and outgoing links.

Calculating PageRank is a graph problem:

BBC TV Tropes

Worm

Practical Guide to Evil

Google really doesn’t want to have to store the graph.

But they can easily list neighbours of a site v in O(d(v)) time...
so they can have the same interface that adjacency lists would provide, but
without actually storing anything!

Situations like this, where the graph is only stored implicitly, are why we really
care about the adjacency list and matrix models.
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Loops and multiple edges

Sometimes it’s useful to consider graphs with:

Loops
connecting vertices to themselves;

Multiple edges
between one pair of vertices.

These are called multigraphs.

Results and algorithms for graphs usually carry over to multigraphs
unchanged, but they often make things harder to visualise and write.

And loops and multiple edges are rarely necessary.

So in this course we will only consider standard (a.k.a. simple) graphs,
without loops or multiple edges.
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