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Path-finding

One of the most basic problems in graph theory: Given a graph G and two
vertices x , y ∈ V (G ), is there a path from x to y?

E.g. can an enemy attack the base without breaking down a wall?

Often we want to know the shortest path from x to y — see next video!
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Component-finding

In fact, it’s better to ask for something more.

Input: A graph G and a vertex x ∈ V (G ).
Output: A list of all vertices in the component of G containing x .

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

Input: v1

Input: v6Input: v4

Output: [v1, v2, v3, v5, v6, v7, v9, v10, v11, v12]

Output: [v4, v8]

In other words, we check whether there is a path from x to y for all y .
Turns out the worst-case running time is the same either way!
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Depth-first search: The idea

Input: A graph G and a vertex x ∈ V (G).
Output: A list of all vertices in the component of G containing x .

Idea: Think of the graph as like a maze: explore greedily until everything
looks familiar, then backtrack.

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

Input: G , v1

Output:

Output: [v1

Output: [v1, v5Output: [v1, v5, v9Output: [v1, v5, v9, v10Output: [v1, v5, v9, v10, v11Output: [v1, v5, v9, v10, v11, v12Output: [v1, v5, v9, v10, v11, v12, v6Output: [v1, v5, v9, v10, v11, v12, v6, v7Output: [v1, v5, v9, v10, v11, v12, v6, v7, v3Output: [v1, v5, v9, v10, v11, v12, v6, v7, v3, v2Output: [v1, v5, v9, v10, v11, v12, v6, v7, v3, v2]

The slick way to implement this is to use recursion.
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Pseudocode and example

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

Input: v1

Algorithm: DFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : List of vertices in v ’s component.

1 Number the vertices of G as v1, . . . , vn.
2 Let explored[i]← 0 for all i ∈ [n].
3 Procedure helper(vi)
4 if explored[i] = 0 then
5 Set explored[i]← 1.
6 for vj adjacent to vi do
7 if explored[j] = 0 then
8 Call helper(vj).

9 Call helper(v).
10 Return [vi : explored[i ] = 1] (in some order).

We assume G is in adjacency list form.

Time analysis: In total there are
∑

v∈V d(v) = O(|E |) calls to helper

(each vertex only runs lines 5–7 once), and there is O(1)
time between calls. So the running time is O(|V |+ |E |).
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Correctness I: Output is contained in v ’s component C

Invariant: “When helper is called, if explored[i ] = 1 then vi ∈ V (C ).”

Proof by induction. Vacuously true for initial call and second call. ✓

Suppose it holds at the start of some call helper(vj) from helper(vi ).
If vj is already explored, we’re done. If not, we must show vj ∈ V (C ).

Since we called from helper(vi ), {vi , vj} ∈ E and vi is explored.
By induction there is a path P from v to vi . Then Pvivj is a walk from v
to vj , which contains a path, so vj ∈ V (C ).
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Correctness II: Output contains v ’s component C

v = x1 x2 w = x3

Let w ∈ V (C ). Then there is a path P = x1 . . . xt from v to w .

Claim: Every vertex in P is explored.

Proof by induction: We prove x1, . . . , xi are explored for all i ≤ t.

x1 is explored. ✓

If xi is explored, then helper(xi+1) will be called from helper(xi ), so
xi+1 will also be explored (either then or earlier).
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Depth-first search trees

Consider the subgraph formed by the edges traversed in DFS:

v v

This is an example of a DFS tree rooted at v .

Definition: A DFS tree T of G is a rooted tree satisfying:

V (T ) is the vertex set of a component of G ;

If {x , y} ∈ E (G ), then x is an ancestor of y in T or vice versa.

Theorem: DFS always gives a DFS tree. (See problem sheet.)

DFS trees can be independently useful! (See problem sheet.)

Depth-first search works for directed graphs too, in exactly the same way.
But paths between v and w are replaced by paths from v to w .

John Lapinskas Depth-first search 8 / 8


