Depth-first search COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Path-finding

One of the most basic problems in graph theory: Given a graph G and two vertices $x, y \in V(G)$, is there a path from x to y ?
E.g. can an enemy attack the base without breaking down a wall?

Often we want to know the shortest path from x to y - see next video!

Component-finding

In fact, it's better to ask for something more.
Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.

Output: $\left[v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}, v_{11}, v_{12}\right]$

Component-finding

In fact, it's better to ask for something more.
Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.

Input: v_{6}
Output: $\left[v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{7}, v_{9}, v_{10}, v_{11}, v_{12}\right]$

Component-finding

In fact, it's better to ask for something more.
Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.

In other words, we check whether there is a path from x to y for all y. Turns out the worst-case running time is the same either way!

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: [v_{1}, v_{5}, v_{9}

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Input: G, v_{1}
Output: [$v_{1}, v_{5}, v_{9}, v_{10}$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: $\left[v_{1}, v_{5}, v_{9}, v_{10}, v_{11}\right.$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: [$v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: [$v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{6}$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: $\left[v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{6}, v_{7}\right.$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: [$v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{6}, v_{7}, v_{3}$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Output: [$v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{6}, v_{7}, v_{3}, v_{2}$

Depth-first search: The idea

Input: A graph G and a vertex $x \in V(G)$.
Output: A list of all vertices in the component of G containing x.
Idea: Think of the graph as like a maze: explore greedily until everything looks familiar, then backtrack.

Input: G, v_{1}
Output: $\left[v_{1}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{6}, v_{7}, v_{3}, v_{2}\right]$
The slick way to implement this is to use recursion.

Pseudocode and example

Algorithm: DFS
Input : Graph $G=(V, E)$, vertex $v \in V$.
Output : List of vertices in v 's component.
1 Number the vertices of G as v_{1}, \ldots, v_{n}.
2 Let explored[1$] \leftarrow 0$ for all $i \in[n]$.
3 Procedure helper (v_{i})
4 if explored $[i]=0$ then
$5 \quad$ Set explored[i] $\leftarrow 1$.
$6 \quad$ for v_{j} adjacent to v_{i} do
$7 \quad \mid \quad$ if explored $[j]=0$ then
8

Pseudocode and example

Algorithm: DFS
Input : Graph $G=(V, E)$, vertex $v \in V$.
Output : List of vertices in v 's component.
1 Number the vertices of G as v_{1}, \ldots, v_{n}.
2 Let explored[$i] \leftarrow 0$ for all $i \in[n]$.
3 Procedure helper (v_{i})
4 if explored $[i]=0$ then
5
Set explored $[i] \leftarrow 1$.
$6 \quad$ for v_{j} adjacent to v_{i} do
7
if explored $[j]=0$ then
$\left\llcorner\right.$ Call helper $\left(v_{j}\right)$.

9 Call helper (v).
10 Return [v_{i} : explored[i]=1] (in some order).

Pseudocode and example

Algorithm: DFS
Input : Graph $G=(V, E)$, vertex $v \in V$.
Output : List of vertices in v 's component.
1 Number the vertices of G as v_{1}, \ldots, v_{n}.
2 Let explored[$i] \leftarrow 0$ for all $i \in[n]$.
3 Procedure helper (v_{i})
4 if explored $[i]=0$ then Set explored $[i] \leftarrow 1$. for v_{j} adjacent to v_{i} do if explored $[j]=0$ then
$\left\llcorner\right.$ Call helper $\left(v_{j}\right)$.

9 Call helper (v).
10 Return [v_{i} : explored[i] =1] (in some order).
We assume G is in adjacency list form.
Time analysis: In total there are $\sum_{v \in V} d(v)=O(|E|)$ calls to helper (each vertex only runs lines 5-7 once), and there is $O(1)$ time between calls. So the running time is $O(|V|+|E|)$.

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored $[i]=1$ then $v_{i} \in V(C)$."
Proof by induction. Vacuously true for initial call and second call.

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored $[i]=1$ then $v_{i} \in V(C)$."
Proof by induction. Vacuously true for initial call and second call.
Suppose it holds at the start of some call helper $\left(v_{j}\right)$ from helper $\left(v_{i}\right)$. If v_{j} is already explored, we're done.

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored $[i]=1$ then $v_{i} \in V(C)$."
Proof by induction. Vacuously true for initial call and second call.
Suppose it holds at the start of some call helper $\left(v_{j}\right)$ from helper $\left(v_{i}\right)$. If v_{j} is already explored, we're done. If not, we must show $v_{j} \in V(C)$.
Since we called from helper $\left(v_{i}\right),\left\{v_{i}, v_{j}\right\} \in E$ and v_{i} is explored. By induction there is a path P from v to v_{i}. Then $P v_{i} v_{j}$ is a walk from v to v_{j}, which contains a path, so $v_{j} \in V(C)$.

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P=x_{1} \ldots x_{t}$ from v to w.

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P=x_{1} \ldots x_{t}$ from v to w.
Claim: Every vertex in P is explored.
Proof by induction: We prove x_{1}, \ldots, x_{i} are explored for all $i \leq t$. x_{1} is explored.

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P=x_{1} \ldots x_{t}$ from v to w.
Claim: Every vertex in P is explored.
Proof by induction: We prove x_{1}, \ldots, x_{i} are explored for all $i \leq t$.
x_{1} is explored.
If x_{i} is explored, then helper $\left(x_{i+1}\right)$ will be called from helper $\left(x_{i}\right)$, so x_{i+1} will also be explored (either then or earlier).

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P=x_{1} \ldots x_{t}$ from v to w.
Claim: Every vertex in P is explored.
Proof by induction: We prove x_{1}, \ldots, x_{i} are explored for all $i \leq t$.
x_{1} is explored.
If x_{i} is explored, then helper $\left(x_{i+1}\right)$ will be called from helper $\left(x_{i}\right)$, so x_{i+1} will also be explored (either then or earlier).

Depth-first search trees

Consider the subgraph formed by the edges traversed in DFS:

This is an example of a DFS tree rooted at v.
Definition: A DFS tree T of G is a rooted tree satisfying:

- $V(T)$ is the vertex set of a component of G;
- If $\{x, y\} \in E(G)$, then x is an ancestor of y in T or vice versa.

Theorem: DFS always gives a DFS tree. (See problem sheet.)
DFS trees can be independently useful! (See problem sheet.)
Depth-first search works for directed graphs too, in exactly the same way. But paths between v and w are replaced by paths from v to w.

