Depth-first search COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Path-finding

One of the most basic problems in graph theory: Given a graph G and two vertices $x, y \in V(G)$, is there a path from x to y?

E.g. can an enemy attack the base without breaking down a wall?

Often we want to know the **shortest** path from x to y — see next video!

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of *G* containing *x*.

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of *G* containing *x*.

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of *G* containing *x*.

In other words, we check whether there is a path from x to y for **all** y. Turns out the worst-case running time is the same either way!

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Input: A graph G and a vertex $x \in V(G)$. **Output:** A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

The slick way to implement this is to use recursion.

Pseudocode and example

Algorithm: DFS

: Graph G = (V, E), vertex $v \in V$. Input : List of vertices in v's component. Output Number the vertices of G as v_1, \ldots, v_n . Let explored $[i] \leftarrow 0$ for all $i \in [n]$. 2 **Procedure** helper(v_i) 3 if explored [i] = 0 then 4 Set explored $[i] \leftarrow 1$. 5 for v_i adjacent to v_i do 6 7 if explored [j] = 0 then Call helper(v_i). 8 Call helper(v). 9 Return $[v_i: explored[i] = 1]$ (in some order). 10

Pseudocode and example

Algorithm: DFS

: Graph G = (V, E), vertex $v \in V$. Input : List of vertices in v's component. Output Number the vertices of G as v_1, \ldots, v_n . Let explored $[i] \leftarrow 0$ for all $i \in [n]$. 2 **Procedure** helper(v_i) if explored [i] = 0 then 4 Set explored $[i] \leftarrow 1$. 5 for v_i adjacent to v_i do 6 7 if explored [j] = 0 then Call helper(v_i). 8 Call helper(v). 9 Return $[v_i: explored[i] = 1]$ (in some order). 10

Pseudocode and example

Algorithm: DFS

Input: Graph G = (V, E), vertex $v \in V$.Output: List of vertices in v's component.1Number the vertices of G as v_1, \ldots, v_n .2Let explored $[i] \leftarrow 0$ for all $i \in [n]$.3Procedure helper (v_i) 4if explored[i] = 0 then5Set explored $[i] \leftarrow 1$.6if explored[i] = 0 then7Let explored[i] = 0 then8Call helper (v_i) .9Call helper(v).10Return $[v_i: explored[i] = 1]$ (in some order).

We assume G is in adjacency list form.

Time analysis: In total there are $\sum_{v \in V} d(v) = O(|E|)$ calls to helper (each vertex only runs lines 5–7 once), and there is O(1) time between calls. So the running time is O(|V| + |E|).

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$." Proof by induction. Vacuously true for initial call and second call.

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$." Proof by induction. Vacuously true for initial call and second call. Suppose it holds at the start of some call helper (v_j) from helper (v_i) . If v_j is already explored, we're done.

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$." Proof by induction. Vacuously true for initial call and second call. \checkmark Suppose it holds at the start of some call helper (v_j) from helper (v_i) . If v_j is already explored, we're done. If not, we must show $v_j \in V(C)$. Since we called from helper (v_i) , $\{v_i, v_j\} \in E$ and v_i is explored. By induction there is a path P from v to v_i . Then Pv_iv_j is a walk from vto v_j , which contains a path, so $v_j \in V(C)$.

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w.

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w. **Claim:** Every vertex in P is explored. **Proof by induction:** We prove x_1, \dots, x_i are explored for all $i \leq t$. x_1 is explored.

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w. Claim: Every vertex in P is explored.

Proof by induction: We prove x_1, \ldots, x_i are explored for all $i \leq t$.

 x_1 is explored.

If x_i is explored, then helper (x_{i+1}) will be called from helper (x_i) , so x_{i+1} will also be explored (either then or earlier).

Correctness II: Output contains v's component C

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w. Claim: Every vertex in P is explored.

Proof by induction: We prove x_1, \ldots, x_i are explored for all $i \leq t$.

 x_1 is explored.

If x_i is explored, then $helper(x_{i+1})$ will be called from $helper(x_i)$, so x_{i+1} will also be explored (either then or earlier).

Depth-first search trees

Consider the subgraph formed by the edges traversed in DFS:

This is an example of a **DFS tree** rooted at v.

Definition: A **DFS tree** *T* of *G* is a rooted tree satisfying:

- V(T) is the vertex set of a component of G;
- If $\{x, y\} \in E(G)$, then x is an ancestor of y in T or vice versa.

Theorem: DFS always gives a DFS tree. (See problem sheet.)

DFS trees can be independently useful! (See problem sheet.)

Depth-first search works for directed graphs too, in exactly the same way. But paths **between** v and w are replaced by paths **from** v **to** w.