
Breadth-first search
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Breadth-first search 1 / 6

Shortest path-finding

Last time: Given a graph G and two vertices x , y ∈ V (G), is there a path
from x to y?

E.g. can an enemy attack the base without breaking down a wall?

This time: What is the shortest path from x to y?

John Lapinskas Breadth-first search 2 / 6

Graph distance

This time: What is the shortest path from x to y?

What do we mean by “shortest”?

The distance between x and y , d(x, y), is the length in edges of a
shortest path between x and y , or ∞ if no such path exists.

x

y

d(x , y) = 2

x

y

d(x , y) = ∞

x = y

d(x , y) = 0

In directed graphs, it’s the same except that the path is from x to y .
So... we might not have d(x , y) = d(y , x)!

John Lapinskas Breadth-first search 3 / 6

Breadth-first search: The idea

Input: A graph G and two vertices x and y .
Output: A shortest path from x to y .

x

y

L0 L1 L2

L3

Let Li be the set of vertices at distance i from x . So L0 = {x}.

L1 is everything adjacent to x .

L2 is everything adjacent to L1, but not in L0 or L1.

In general, Li+1 is everything adjacent to Li and not in L0 ∪ · · · ∪ Li .

By continuing this until we find y , keeping track of which edges we use,
we get a shortest path to y .

John Lapinskas Breadth-first search 4 / 6

Breadth-first search: The idea

Input: A graph G and two vertices x and y .
Output: A shortest path from x to y .

x

y

L0 L1 L2

L3

Let Li be the set of vertices at distance i from x . So L0 = {x}.

L1 is everything adjacent to x .

L2 is everything adjacent to L1, but not in L0 or L1.

In general, Li+1 is everything adjacent to Li and not in L0 ∪ · · · ∪ Li .

By continuing this until we find y , keeping track of which edges we use,
we get a shortest path to y .

John Lapinskas Breadth-first search 4 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:(1, 5), (1, 6), (1, 2)

(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 ∞ ∞ ∞

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)

(1, 6), (1, 2), (5, 9), (5, 6)

(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 ∞ ∞ ∞

1 ∞ ∞ ∞

∞ ∞ ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)

(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 ∞ ∞ ∞

1 1 ∞ ∞

∞ ∞ ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 ∞ ∞

1 1 ∞ ∞

∞ ∞ ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 ∞ ∞

1 1 ∞ ∞

2 ∞ ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 ∞ ∞

1 1 ∞ ∞

2 2 ∞ ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 ∞ ∞

1 1 ∞ ∞

2 2 2 ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 ∞ ∞

1 1 2 ∞

2 2 2 ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)

(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)

(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 2 ∞

1 1 2 ∞

2 2 2 ∞

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:

(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)

(7, 3), (3, 7)

(3, 7)

0 1 2 ∞

1 1 2 ∞

2 2 2 3

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 2 ∞

1 1 2 ∞

2 2 2 3

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

In the output, L[i] = d(v , vi). By following edges back from vi via pred,
we can also quickly reconstruct a shortest path from v to vi .

E.g. v1v6v11v12 is a shortest path from v1 to v12.

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 2 ∞

1 1 2 ∞

2 2 2 3

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

Time analysis: If G is in adjacency list form, each edge is added to
queue at most twice, incurring O(1) overhead each time,
so the running time is O(|V |+ |E |).

John Lapinskas Breadth-first search 5 / 6

Breadth-first search: Implementation

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

queue:(1, 5), (1, 6), (1, 2)(1, 6), (1, 2)(1, 6), (1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6)(1, 2), (5, 9), (5, 6), (6, 5),
(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2)

(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(5, 9), (5, 6), (6, 5), (6, 9),
(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3)

(5, 6), (6, 5), (6, 9), (6, 10),
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)

(6, 5), (6, 9), (6, 10), (6, 11),
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6)

(6, 9), (6, 10), (6, 11), (6, 7),
(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6)

(6, 10), (6, 11), (6, 7), (6, 2),
(2, 6), (2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6)
(6, 11), (6, 7), (6, 2), (2, 6),
(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9)

(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9)
(6, 7), (6, 2), (2, 6), (2, 3),
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12)

(6, 2), (2, 6), (2, 3), (9, 10),
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3)

(2, 6), (2, 3), (9, 10), (9, 6),
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3)

(2, 3), (9, 10), (9, 6), (10, 11),
(10, 9), (11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3)
(9, 10), (9, 6), (10, 11), (10, 9),
(11, 10), (11, 12), (7, 3), (3, 7)
(9, 6), (10, 11), (10, 9), (11, 10),
(11, 12), (7, 3), (3, 7)
(10, 11), (10, 9), (11, 10), (11, 12),
(7, 3), (3, 7)
(10, 9), (11, 10), (11, 12), (7, 3),
(3, 7)
(11, 10), (11, 12), (7, 3), (3, 7)(11, 12), (7, 3), (3, 7)(7, 3), (3, 7)(3, 7)

0 1 2 ∞

1 1 2 ∞

2 2 2 3

Algorithm: BFS

Input : Graph G = (V ,E), vertex v ∈ V .
Output : d(v , y) for all y ∈ V and “a way of

finding shortest paths”.
1 Number the vertices of G as v = v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a queue containing all tuples

(v , vj) with {v , vj} ∈ E .
5 while queue is not empty do
6 Remove front tuple (vi , vj) from queue.
7 if L[j] =∞ then
8 Add (vj , vk) to queue for all

{vj , vk} ∈ E , k ̸= i .
9 Set L[j]← L[i] + 1, pred[j] = i .

10 Return L and pred.

Important: There is a significant space inefficiency in this version of
breadth-first search! See example sheet.

John Lapinskas Breadth-first search 5 / 6

BFS trees

Definition: A BFS tree T of G is a rooted tree (call its root x) with:

1 V (T) is the vertex set of a component of G ;

2 The i ’th layer of T is {x : dG (x , v) = i};
3 If {x , y} ∈ E (G), then |dG (v , x)− dG (v , y)| ≤ 1, i.e. x and y must

be in the same or adjacent layers of T .

v
L1 L2 L3

Theorem: The tree of edges from pred is always a BFS tree.

Proof: We already proved (1) and (2), so suppose {x , y} ∈ E (G).

If P is a shortest path from v to x , then Pxy is a path from v to y , so
d(v , y) ≤ d(v , x) + 1. Likewise d(v , x) ≤ d(v , y) + 1. ✓

John Lapinskas Breadth-first search 6 / 6

