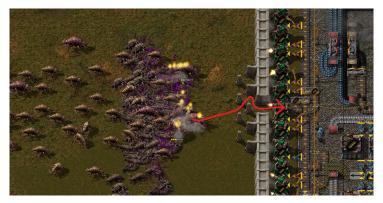
Breadth-first search COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Shortest path-finding

Last time: Given a graph G and two vertices $x, y \in V(G)$, is there a path from x to y?

E.g. can an enemy attack the base without breaking down a wall?



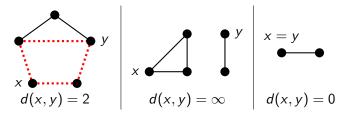
This time: What is the **shortest** path from *x* to *y*?

John Lapinskas

This time: What is the **shortest** path from *x* to *y*?

What do we mean by "shortest"?

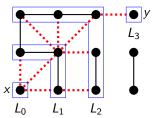
The **distance** between x and y, d(x, y), is the length in edges of a shortest path between x and y, or ∞ if no such path exists.



In directed graphs, it's the same except that the path is from x to y. So... we might not have d(x, y) = d(y, x)!

Breadth-first search: The idea

Input: A graph *G* and two vertices *x* and *y*. **Output:** A shortest path from *x* to *y*.



Let L_i be the set of vertices at distance *i* from *x*. So $L_0 = \{x\}$.

 L_1 is everything adjacent to x.

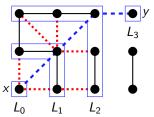
 L_2 is everything adjacent to L_1 , but **not** in L_0 or L_1 .

In general, L_{i+1} is everything adjacent to L_i and not in $L_0 \cup \cdots \cup L_i$.

By continuing this until we find y, keeping track of which edges we use, we get a shortest path to y.

Breadth-first search: The idea

Input: A graph *G* and two vertices *x* and *y*. **Output:** A shortest path from *x* to *y*.



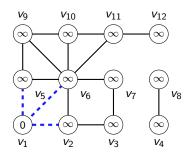
Let L_i be the set of vertices at distance *i* from *x*. So $L_0 = \{x\}$.

 L_1 is everything adjacent to x.

 L_2 is everything adjacent to L_1 , but **not** in L_0 or L_1 .

In general, L_{i+1} is everything adjacent to L_i and not in $L_0 \cup \cdots \cup L_i$.

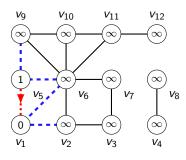
By continuing this until we find y, keeping track of which edges we use, we get a shortest path to y.



queue: (1, 5), (1, 6), (1, 2)

Algorithm: BFS

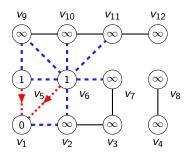
: Graph G = (V, E), vertex $v \in V$. Input **Output** : d(v, y) for all $y \in V$ and "a way of finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[j] \leftarrow L[i] + 1$, pred[j] = i. 9



queue: (1, 6), (1, 2), (5, 9), (5, 6)

Algorithm: BFS

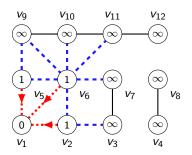
: Graph G = (V, E), vertex $v \in V$. Input **Output** : d(v, y) for all $y \in V$ and "a way of finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[j] \leftarrow L[i] + 1$, pred[j] = i. 9



queue: (1, 2), (5, 9), (5, 6), (6, 5),(6, 9), (6, 10), (6, 11), (6, 7), (6, 2)

Algorithm: BFS

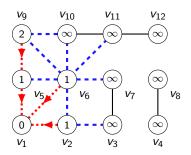
: Graph G = (V, E), vertex $v \in V$. Input Output : d(v, y) for all $y \in V$ and "a way of finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i. 9



queue: (5,9), (5,6), (6,5), (6,9), (6,10), (6,11), (6,7), (6,2), (2,6), (2,3)

Algorithm: BFS

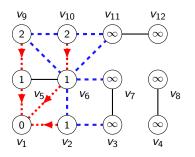
: Graph G = (V, E), vertex $v \in V$. Input Output : d(v, y) for all $y \in V$ and "a way of finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i. 9



queue: (5, 6), (6, 5), (6, 9), (6, 10),(6, 11), (6, 7), (6, 2), (2, 6), (2, 3), (9, 10), (9, 6)

Algorithm: BFS

: Graph G = (V, E), vertex $v \in V$. Input Output : d(v, y) for all $y \in V$ and "a way of finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i. 9



queue: (6, 11), (6, 7), (6, 2), (2, 6), (2, 3), (2, 3), (9, 10), (9, 6), (10, 11), (10, 9)

Algorithm: BFS

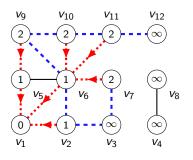
: Graph G = (V, E), vertex $v \in V$. Input Output : d(v, y) for all $y \in V$ and "a way of finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i.



queue: (6,7), (6,2), (2,6), (2,3), (9,10), (9,6), (10,11), (10,9), (11,10), (11,12)

Algorithm: BFS

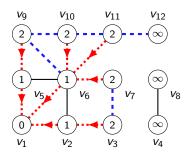
: Graph G = (V, E), vertex $v \in V$. Input : d(v, y) for all $y \in V$ and "a way of Output finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i.



queue: (6, 2), (2, 6), (2, 3), (9, 10),(9, 6), (10, 11), (10, 9), (11, 10), (11, 12), (7, 3) ¹⁰

Algorithm: BFS

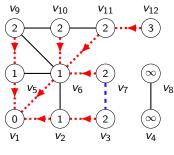
: Graph G = (V, E), vertex $v \in V$. Input : d(v, y) for all $y \in V$ and "a way of Output finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[j] \leftarrow L[i] + 1$, pred[j] = i.



queue: $(9, 10), (9, 6), (10, 11), (10, 9)_{9}$ (11, 10), (11, 12), (7, 3), (3, 7)

Algorithm: BFS

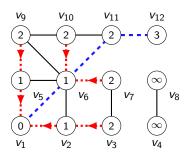
: Graph G = (V, E), vertex $v \in V$. Input : d(v, y) for all $y \in V$ and "a way of Output finding shortest paths". Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_i, v_k\} \in E, k \neq i.$ Set $L[i] \leftarrow L[i] + 1$, pred[i] = i.



queue: (7,3), (3,7)

Algorithm: BFS

Input : Graph G = (V, E), vertex $v \in V$. **Output** : d(v, y) for all $y \in V$ and "a way of finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_j, v_k\} \in E, \ k \neq i.$ Set $L[j] \leftarrow L[i] + 1$, pred[j] = i. 9



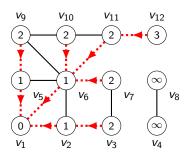
Algorithm: BFS

: Graph G = (V, E), vertex $v \in V$. Input **Output** : d(v, y) for all $y \in V$ and "a way of finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_j, v_k\} \in E, k \neq i.$ Set $L[j] \leftarrow L[i] + 1$, pred[j] = i. 9

10 Return L and pred.

In the output, $L[i] = d(v, v_i)$. By following edges back from v_i via pred, we can also quickly reconstruct a shortest path from v to v_i .

E.g. $v_1v_6v_{11}v_{12}$ is a shortest path from v_1 to v_{12} .

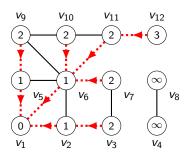


Algorithm: BFS

: Graph G = (V, E), vertex $v \in V$. Input : d(v, y) for all $y \in V$ and "a way of Output finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_j, v_k\} \in E, \ k \neq i.$ Set $L[j] \leftarrow L[i] + 1, \ pred[j] = i.$ 9

10 Return L and pred.

Time analysis: If G is in adjacency list form, each edge is added to queue at most twice, incurring O(1) overhead each time, so the running time is O(|V| + |E|).



Algorithm: BFS

: Graph G = (V, E), vertex $v \in V$. Input Output : d(v, y) for all $y \in V$ and "a way of finding shortest paths". 1 Number the vertices of G as $v = v_1, \ldots, v_n$. 2 Let $L[i] \leftarrow \infty$ for all $i \in [n]$. 3 Let $L[1] \leftarrow 0$, pred $[1] \leftarrow None$. 4 Let queue be a queue containing all tuples (v, v_i) with $\{v, v_i\} \in E$. 5 while queue is not empty do Remove front tuple (v_i, v_i) from queue. 6 7 if $L[i] = \infty$ then Add (v_i, v_k) to queue for all 8 $\{v_j, v_k\} \in E, \ k \neq i.$ Set $L[j] \leftarrow L[i] + 1, \ pred[j] = i.$ 9

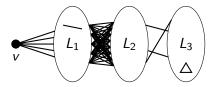
10 Return L and pred.

Important: There is a significant **space** inefficiency in this version of breadth-first search! See example sheet.

BFS trees

Definition: A **BFS** tree T of G is a rooted tree (call its root x) with:

- V(T) is the vertex set of a component of G;
- 2 The *i*'th layer of T is $\{x: d_G(x, v) = i\}$;
- If $\{x, y\} \in E(G)$, then $|d_G(v, x) d_G(v, y)| \le 1$, i.e. x and y must be in the same or adjacent layers of T.



Theorem: The tree of edges from pred is always a BFS tree.

Proof: We already proved (1) and (2), so suppose $\{x, y\} \in E(G)$.

If P is a shortest path from v to x, then Pxy is a path from v to y, so $d(v, y) \le d(v, x) + 1$. Likewise $d(v, x) \le d(v, y) + 1$.