Matchings I: Definitions COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Definition by example

Suppose I'm trying to schedule a sequence of meetings with my tutees. I can only see one of them at once, and each of them can make a different set of times:

Tutee	Available times
Aisha	$2: 00,3: 00,3: 30$
Bob	$2: 30$
Cara	$2: 00,2: 30,4: 00$
Dale	$2: 00,3: 30,4: 00$
Erica	$2: 00,2: 30,3: 00,3: 30,4: 00$

Who should I see when?

We can represent this with a graph:

Tutee	Available times
Aisha	$2: 00,3: 00, ~ 3: 30$ Bob
$\frac{2: 30}{2: 00}, 2: 30, ~ 4: 00$ Cara	
Dale	$2: 00, ~ 3: 30,4: 00$
Erica	$2: 00,2: 30, \underline{3: 00}$,
	$3: 30,4: 00$

We join a student to a time if they can make that time.
A valid choice of times corresponds to a matching in the graph.

Formal definitions

A matching in a graph is a collection of disjoint edges.
It is perfect if every vertex is contained in some matching edge.
A graph $G=(V, E)$ is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition. Here, can take:
$A=\{$ Aisha, Bob, Cara, Dale, Erica $\}, B=\{2: 00,2: 30,3: 00,3: 30,4: 00\}$.

A matching in a graph is a collection of disjoint edges.
It is perfect if every vertex is contained in some matching edge.
A graph $G=(V, E)$ is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition. Here, can take:

$$
A=\{\text { Aisha, Bob, Cara, Dale, Erica }\}, B=\{2: 00,2: 30,3: 00,3: 30,4: 00\} .
$$

Note that bipartitions are not unique! E.g. we could also take:
$A=\{2: 00,2: 30,3: 00,3: 30,4: 00\}, B=\{$ Aisha, Bob, Cara, Dale, Erica $\}$.
(Exercise: Are there ever more than two possibilities?)

A matching in a graph is a collection of disjoint edges.
It is perfect if every vertex is contained in some matching edge.
A graph $G=(V, E)$ is bipartite if V can be partitioned into disjoint sets A and B which contain no edges; these are a bipartition.

Lemma: G is bipartite if and only if it has no odd-length cycle. Proof of "only if": Suppose G has bipartition (A, B) and $C=v_{1} \ldots v_{k}$ is an odd cycle in G.

Wlog $v_{1} \in A$. Since A has no edges, this means $v_{2} \in B$. Continuing the argument, $v_{i} \in A$ if i is odd, and $v_{i} \in B$ if i is even. In particular, $v_{k} \in A$.

But v_{1} and v_{k} are adjacent, so this is a contradiction.

"If": See problem sheet.

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching which is as large as possible.

Algorithms for this problem (or generalisations) can be applied to e.g.:

- Scheduling meetings.
- Matching lectures to available rooms.
- Matching people to tasks they're qualified for.
- Matching residents to hospitals. (Must output a "stable" matching.)
- Matching banner ads to viewers. (Must be an "online" algorithm.)
- Matching people as a dating site. (Must handle non-bipartite graphs!)

