Matchings II: Finding the maximum COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

But if we had considered edges a different order...

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

But if we had considered edges a different order...

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

But if we had considered edges a different order...

An algorithm for maximum matchings

General problem statement: Given a bipartite graph $G=(V, E)$, output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

But if we had considered edges a different order... we wouldn't have been able to match Bob! So this algorithm fails.

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

This forces us to unmatch 2:30...

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob! And now we continue as before, and get a perfect matching.

Repairing poor decisions: the general method

Given a matching M in a bipartite graph G, an augmenting path P for M is a path in G which alternates between matching and non-matching edges, and which begins and ends with unmatched vertices.

Formally, writing $P=v_{0} \ldots v_{k}$, we require $\left\{v_{i}, v_{i+1}\right\} \in M$ for all odd i, $\left\{v_{i}, v_{i+1}\right\} \notin M$ for all even i, and $v_{0}, v_{k} \notin \bigcup_{e \in M} e$. For example:

Given a matching M in a bipartite graph G, an augmenting path for M is a path $P=v_{0} \ldots v_{k}$ such that:

- $\left\{v_{i}, v_{i+1}\right\} \in M$ for all odd i;
- $\left\{v_{i}, v_{i+1}\right\} \notin M$ for all even i;
- $v_{0}, v_{k} \notin \bigcup_{e \in M}$ e.

If P is an augmenting path for M, we define
$\operatorname{Switch}(M, P)=M-\left\{\left\{v_{i}, v_{i+1}\right\}: i\right.$ is odd $\} \cup\left\{\left\{v_{i}, v_{i+1}\right\}: i\right.$ is even $\}$.
Then Switch (M, P) is a matching containing one more edge than M.

This suggests a new greedy algorithm!

A correct algorithm for maximum matchings

Algorithm: MaxMatching (Sketch)
Input : A bipartite graph $G=(V, E)$.
Output : A list of edges forming a matching in G of maximum size.
1 begin
2 Initialise $M \leftarrow$ [], the empty matching.
while G contains an augmenting path for M do
Find an augmenting path P for M.
Update $M \leftarrow \operatorname{Switch}(M, P)$.
Return M.

To make this work, we need to do two things:

- Find an efficient way to find an augmenting path whenever one exists.
- Prove that if M has no augmenting paths, then M is maximum.

Finding augmenting paths efficiently

If we search by brute force, this could take $\Theta(|V|!)$ time! Let's not.
One general theme of this course: solve a complex problem by applying an algorithm for a simple problem in a clever way. We call this reducing the complex problem to the simple one.

Here, we reduce the problem of finding an augmenting path to a problem we can already solve: finding a path from one set to another in a directed graph, via breadth-first search.
(For how to apply breadth-first search to sets instead of vertices, see last week's problem sheet - this is itself a reduction!)

Suppose $G=(V, E)$ has a matching M and a bipartition (A, B).
Turn G into an auxiliary digraph $D_{G, M}$ by directing non-matching edges from A to B and matching edges from B to A. Formally:

$$
\begin{aligned}
V\left(D_{G, M}\right): & =V, \\
E\left(D_{G, M}\right): & =\{(a, b): a \in A, b \in B,\{a, b\} \in E \backslash M\} \cup \\
& \{(b, a): a \in A, b \in B,\{a, b\} \in M\} .
\end{aligned}
$$

$D_{G, M}$ is defined by directing edges outside M from A to B, and edges in M from B to A.
$P=v_{0} \ldots v_{k}$ is augmenting if $\left\{v_{i}, v_{i+1}\right\} \in M$ for all odd i, $\left\{v_{i}, v_{i+1}\right\} \notin M$ for all even i, and $v_{0}, v_{k} \notin \bigcup_{e \in M} e$.

Let $U=V \backslash \bigcup_{e \in M}$ e be the set of vertices not matched by M.
Lemma: A path in G is augmenting for M if and only if it's also a path from $U \cap A$ to $U \cap B$ in $D_{G, M}$.

Proof: First note any augmenting path in G has endpoints in $U \cap A$ and $U \cap B$, since it has an odd number of edges and G is bipartite.

So let $P=v_{0} \ldots v_{k}$ be any path in G with $v_{0} \in U \cap A, v_{k} \in U \cap B$. We show P is augmenting for M iff it is also a path in $D_{G, M}$.

- G is bipartite $\Rightarrow v_{i} \in A$ for all even i and $v_{i} \in B$ for all odd i. So:
- $\left\{v_{i}, v_{i+1}\right\} \in M$ for all odd $i \Leftrightarrow\left(v_{i}, v_{i+1}\right) \in E\left(D_{G, M}\right)$ for all odd i;
- $\left\{v_{i}, v_{i+1}\right\} \notin M$ for all even $i \Leftrightarrow\left(v_{i}, v_{i+1}\right) \in E\left(D_{G, M}\right)$ for all even i. \square

Algorithm: MAxMatching
Input : A bipartite graph $G=(V, E)$.
Output : A list of edges forming a matching in G of maximum size.
1 begin
Find a bipartition (A, B) of G. Initialise $M \leftarrow[]$. repeat

Form the graph $D_{G, M}$.
Set P to be a path from $U \cap A$ to $U \cap B$ in $D_{G, M}$ if one exists.
Otherwise, break.
Update $M \leftarrow \operatorname{Switch}(M, P)$.
Return M.

Invariant: At the start of the ith loop iteration, M is a matching with $i-1$ edges. M can have at most $|V| / 2$ edges in total, so MaxMatching outputs a matching with no augmenting paths.

Algorithm: MaxMatching

begin
Find a bipartition (A, B) of G. Initialise $M \leftarrow[]$. repeat

Form the graph $D_{G, M}$.
Set P to be a path from $U \cap A$ to $U \cap B$ in $D_{G, M}$ if one exists.
Otherwise, break.
Update $M \leftarrow \operatorname{Switch}(M, P)$.
Return M.

- Steps 2, 4 and 6 can all be done in $O(|E|)$ time. (Exercise!)
- Step 5 can be done in $O(|E|)$ time using breadth-first search, if G is in adjacency-list form.
- Steps 4-6 repeat at most $|V|$ times.

So overall the running time is $O(|E||V|)$.

Berge's Lemma: M has no augmenting paths $\Rightarrow M$ is maximum. We suppose M is not maximum, and find an augmenting path.

Let M^{\prime} be another matching which is maximum, so $\left|M^{\prime}\right|>|M|$. Consider the symmetric difference $S=M \triangle M^{\prime}$, i.e. the graph formed of edges contained in either M or M^{\prime} but not both.

Since each vertex is in at most one M edge and at most one M^{\prime} edge, S has maximum degree at most 2 .

So S is a disjoint union of path and cycle components.

Berge's Lemma: M has no augmenting paths $\Rightarrow M$ is maximum. We suppose M is not maximum, and find an augmenting path.

Let M^{\prime} be another matching which is maximum, so $\left|M^{\prime}\right|>|M|$. Consider the symmetric difference $S=M \triangle M^{\prime}$, i.e. the graph formed of edges contained in either M or M^{\prime} but not both.

Since M and M^{\prime} are matchings, each component's edges must alternate between M^{\prime} and M. (In particular, no odd cycles!)

Berge's Lemma: M has no augmenting paths $\Rightarrow M$ is maximum. We suppose M is not maximum, and find an augmenting path.

Let M^{\prime} be another matching which is maximum, so $\left|M^{\prime}\right|>|M|$. Consider the symmetric difference $S=M \triangle M^{\prime}$, i.e. the graph formed of edges contained in either M or M^{\prime} but not both.

Since $\left|M^{\prime}\right|>|M|$, some component C has more M^{\prime}-edges than M-edges. Since M^{\prime}-edges and M-edges alternate, it has exactly one more M^{\prime}-edge.
G is bipartite, so it has no odd cycles, so C must be a path starting and ending with an M^{\prime}-edge - an augmenting path.

Recall that given a graph G, we proved that MaxMatching returns a matching M for G with no augmenting path in time $O(|E \| V|)$.

Berge's Lemma tells us that M is maximum, so we're done!
Let us celebrate with a matching pair of kittens.

D'awww.

