
Matchings II: Finding the maximum
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Finding maximum matchings 1 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order...

we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order...

we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order...

we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V ,E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn’t have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings 2 / 13

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!
And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings 3 / 13

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...

Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!
And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings 3 / 13

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...

Who can still meet us at 2:00. So we succeeded in matching Bob!
And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings 3 / 13

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!

And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings 3 / 13

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!
And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings 3 / 13

Repairing poor decisions: the general method

Given a matching M in a bipartite graph G , an augmenting path P for
M is a path in G which alternates between matching and non-matching
edges, and which begins and ends with unmatched vertices.

Formally, writing P = v0 . . . vk , we require {vi , vi+1} ∈ M for all odd i ,
{vi , vi+1} /∈ M for all even i , and v0, vk /∈

⋃
e∈M e. For example:

John Lapinskas Finding maximum matchings 4 / 13

Given a matching M in a bipartite graph G , an augmenting path for M is a path P = v0 . . . vk
such that:

{vi , vi+1} ∈ M for all odd i ;

{vi , vi+1} /∈ M for all even i ;

v0, vk /∈
⋃

e∈M e.

If P is an augmenting path for M, we define

Switch(M,P) = M − {{vi , vi+1} : i is odd} ∪ {{vi , vi+1} : i is even}.

Then Switch(M,P) is a matching containing one more edge than M.

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

This suggests a new greedy algorithm!

John Lapinskas Finding maximum matchings 5 / 13

A correct algorithm for maximum matchings

Algorithm: MaxMatching (Sketch)

Input : A bipartite graph G = (V ,E).
Output : A list of edges forming a matching in G of maximum size.

1 begin
2 Initialise M ← [], the empty matching.
3 while G contains an augmenting path for M do
4 Find an augmenting path P for M.
5 Update M ← Switch(M,P).

6 Return M.

To make this work, we need to do two things:

Find an efficient way to find an augmenting path whenever one exists.

Prove that if M has no augmenting paths, then M is maximum.

John Lapinskas Finding maximum matchings 6 / 13

Finding augmenting paths efficiently

If we search by brute force, this could take Θ(|V |!) time! Let’s not.

One general theme of this course: solve a complex problem by applying an
algorithm for a simple problem in a clever way. We call this reducing the
complex problem to the simple one.

Here, we reduce the problem of finding an augmenting path to a problem
we can already solve: finding a path from one set to another in a directed
graph, via breadth-first search.

(For how to apply breadth-first search to sets instead of vertices, see last
week’s problem sheet — this is itself a reduction!)

John Lapinskas Finding maximum matchings 7 / 13

Suppose G = (V ,E) has a matching M and a bipartition (A,B).
Turn G into an auxiliary digraph DG ,M by directing non-matching edges
from A to B and matching edges from B to A. Formally:

V (DG ,M) := V ,

E (DG ,M) := {(a, b) : a ∈ A, b ∈ B, {a, b} ∈ E \M} ∪
{(b, a) : a ∈ A, b ∈ B, {a, b} ∈ M}.

A

B

John Lapinskas Finding maximum matchings 8 / 13

DG ,M is defined by directing edges outside M from A to B,
and edges in M from B to A.

P = v0 . . . vk is augmenting if {vi , vi+1} ∈ M for all odd i ,
{vi , vi+1} /∈ M for all even i , and v0, vk /∈

⋃
e∈M e.

Let U = V \
⋃

e∈M e be the set of vertices not matched by M.

Lemma: A path in G is augmenting for M if and only if it’s also a path
from U ∩ A to U ∩ B in DG ,M .

Proof: First note any augmenting path in G has endpoints in U ∩ A and
U ∩ B, since it has an odd number of edges and G is bipartite.

So let P = v0 . . . vk be any path in G with v0 ∈ U ∩ A, vk ∈ U ∩ B.
We show P is augmenting for M iff it is also a path in DG ,M .

G is bipartite ⇒ vi ∈ A for all even i and vi ∈ B for all odd i . So:

{vi , vi+1} ∈ M for all odd i ⇔ (vi , vi+1) ∈ E (DG ,M) for all odd i ;

{vi , vi+1} /∈ M for all even i ⇔ (vi , vi+1) ∈ E (DG ,M) for all even i .

John Lapinskas Finding maximum matchings 9 / 13

Algorithm: MaxMatching

Input : A bipartite graph G = (V ,E).
Output : A list of edges forming a matching in G of maximum size.

1 begin
2 Find a bipartition (A,B) of G . Initialise M ← [].
3 repeat
4 Form the graph DG ,M .
5 Set P to be a path from U ∩ A to U ∩ B in DG ,M if one exists.

Otherwise, break.
6 Update M ← Switch(M,P).

7 Return M.

Invariant: At the start of the ith loop iteration, M is a matching with
i − 1 edges. M can have at most |V |/2 edges in total, so
MaxMatching outputs a matching with no augmenting paths.

John Lapinskas Finding maximum matchings 10 / 13

Algorithm: MaxMatching

1 begin
2 Find a bipartition (A,B) of G . Initialise M ← [].
3 repeat
4 Form the graph DG ,M .
5 Set P to be a path from U ∩ A to U ∩ B in DG ,M if one exists.

Otherwise, break.
6 Update M ← Switch(M,P).

7 Return M.

Steps 2, 4 and 6 can all be done in O(|E |) time. (Exercise!)

Step 5 can be done in O(|E |) time using breadth-first search, if G is
in adjacency-list form.

Steps 4–6 repeat at most |V | times.

So overall the running time is O(|E ||V |).

John Lapinskas Finding maximum matchings 11 / 13

Berge’s Lemma: M has no augmenting paths ⇒ M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M ′ be another matching which is maximum, so |M ′| > |M|.
Consider the symmetric difference S = M△M ′, i.e. the graph formed of
edges contained in either M or M ′ but not both.

Since each vertex is in at most one M edge and at most one M ′ edge, S
has maximum degree at most 2.

So S is a disjoint union of path and cycle components.

John Lapinskas Finding maximum matchings 12 / 13

Berge’s Lemma: M has no augmenting paths ⇒ M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M ′ be another matching which is maximum, so |M ′| > |M|.
Consider the symmetric difference S = M△M ′, i.e. the graph formed of
edges contained in either M or M ′ but not both.

M

M ′

Since M and M ′ are matchings, each component’s edges must alternate
between M ′ and M. (In particular, no odd cycles!)

John Lapinskas Finding maximum matchings 12 / 13

Berge’s Lemma: M has no augmenting paths ⇒ M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M ′ be another matching which is maximum, so |M ′| > |M|.
Consider the symmetric difference S = M△M ′, i.e. the graph formed of
edges contained in either M or M ′ but not both.

M

M ′

C

Since |M ′| > |M|, some component C has more M ′-edges than M-edges.
Since M ′-edges and M-edges alternate, it has exactly one more M ′-edge.

G is bipartite, so it has no odd cycles, so C must be a path starting and
ending with an M ′-edge — an augmenting path.

John Lapinskas Finding maximum matchings 12 / 13

Recall that given a graph G , we proved that MaxMatching returns a
matching M for G with no augmenting path in time O(|E ||V |).

Berge’s Lemma tells us that M is maximum, so we’re done!

Let us celebrate with a matching pair of kittens.

D’awww.

John Lapinskas Finding maximum matchings 13 / 13

