Matchings Il: Finding the maximum

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order...

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order...

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

But if we had considered edges a different order...

John Lapinskas Finding maximum matchings

An algorithm for maximum matchings

General problem statement: Given a bipartite graph G = (V, E),
output a matching M which is as large as possible (i.e. maximum).

Can we form M by greedily adding edges? E.g.:

Aisha Bob Cara Dale Erica

2:00 2:30 3:00 3:30 4:00

But if we had considered edges a different order... we wouldn't have been
able to match Bob! So this algorithm fails.

John Lapinskas Finding maximum matchings

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

John Lapinskas Finding maximum matchings

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

This forces us to unmatch 2:30...

John Lapinskas Finding maximum matchings

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...

John Lapinskas Finding maximum matchings

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica
@
2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...
Which leaves us free to rematch Cara...
Who can still meet us at 2:00. So we succeeded in matching Bob!

John Lapinskas Finding maximum matchings

Repairing poor decisions: an example

But maybe all is not lost... Say we try to force Bob into the matching.

Aisha Bob Cara Dale Erica
o
2:00 2:30 3:00 3:30 4:00

This forces us to unmatch 2:30...

Which leaves us free to rematch Cara...

Who can still meet us at 2:00. So we succeeded in matching Bob!
And now we continue as before, and get a perfect matching.

John Lapinskas Finding maximum matchings

Repairing poor decisions: the general method

Given a matching M in a bipartite graph G, an augmenting path P for
M is a path in G which alternates between matching and non-matching
edges, and which begins and ends with unmatched vertices.

Formally, writing P = vy. .. vk, we require {v;, vi11} € M for all odd i,
{vi,viy1} ¢ M for all even i, and vo, vk & (J.cps €. For example:

John Lapinskas

Finding maximum matchings

Given a matching M in a bipartite graph G, an augmenting path for M is a path P = vy ... v,
such that:
@ {vj,vit1} € M for all odd 7;
@ {vj,viy1} ¢ M for all even i;
@ v, vk % UeEM e.
If P is an augmenting path for M, we define
Switch(M,P) = M — {{vi, vit1}: i is odd} U {{vj, viz1}: i is even}.
Then Switch(M, P) is a matching containing one more edge than M.
Aisha Bob Cara Dale Erica
2:.00 2:30 3:.00 3:30 400
This suggests a new greedy algorithm!
John Lapinskas Finding maximum matchings 5/13

A correct algorithm for maximum matchings

Algorithm: MAXMATCHING (SKETCH)
Input : A bipartite graph G = (V, E).
Output : A list of edges forming a matching in G of maximum size.
begin

Initialise M < [], the empty matching.

while G contains an augmenting path for M do

Find an augmenting path P for M.
L Update M « Switch(M, P).

Return M.

[I N

o

To make this work, we need to do two things:

o Find an efficient way to find an augmenting path whenever one exists.

@ Prove that if M has no augmenting paths, then M is maximum.

John Lapinskas

Finding maximum matchings

Finding augmenting paths efficiently

If we search by brute force, this could take ©(|V/|!) time! Let's not.

One general theme of this course: solve a complex problem by applying an
algorithm for a simple problem in a clever way. We call this reducing the
complex problem to the simple one.

Here, we reduce the problem of finding an augmenting path to a problem
we can already solve: finding a path from one set to another in a directed
graph, via breadth-first search.

(For how to apply breadth-first search to sets instead of vertices, see last
week's problem sheet — this is itself a reduction!)

John Lapinskas Finding maximum matchings

Suppose G = (V, E) has a matching M and a bipartition (A, B).
Turn G into an auxiliary digraph D¢ v by directing non-matching edges
from A to B and matching edges from B to A. Formally:

V(Dg.m) =V,

E(Dgm):={(a,b):ac A, be B, {a, b} € E\M} U
{(b,a): a€ A, be B, {a,b} € M}.

John Lapinskas Finding maximum matchings

D¢, is defined by directing edges outside M from A to B,
and edges in M from B to A.
P =wv...vg is augmenting if {v;,vi11} € M for all odd i,
{Vvi;viy1} & M for all even i, and vo, vk & Uy e-

Let U= V' \ U.cum e be the set of vertices not matched by M.

Lemma: A path in G is augmenting for M if and only if it's also a path
from UNAto UN B in Dg pm.

Proof: First note any augmenting path in G has endpoints in UN A and
U N B, since it has an odd number of edges and G is bipartite.

Solet P=vy...v, be any path in G with vg € UNA, v, € UN B.
We show P is augmenting for M iff it is also a path in Dg pm.

@ G is bipartite = v; € A for all even i and v; € B for all odd i. So:
o {vj,viy1} € M for all odd i < (vj, vjy1) € E(Dg m) for all odd i;
o {vj,viy1} ¢ M for all even i < (vj, viy1) € E(Dg m) for all even i. []

John Lapinskas Finding maximum matchings 9/13

Algorithm: MAXMATCHING

Input : A bipartite graph G = (V, E).
Output : A list of edges forming a matching in G of maximum size.
begin
Find a bipartition (A, B) of G. Initialise M «+ [].
repeat
Form the graph D¢ um.
Set P to be a path from UN A to UN B in Dg u if one exists.
Otherwise, break.
Update M < Switch(M, P).

B Return M.

Invariant: At the start of the ith loop iteration, M is a matching with
i — 1 edges. M can have at most |V/|/2 edges in total, so
MAXMATCHING outputs a matching with no augmenting paths.

John Lapinskas Finding maximum matchings

10/13

Algorithm: MAXMATCHING

begin

Find a bipartition (A, B) of G. Initialise M <« [].

repeat
Form the graph Dg um.
Set P to be a path from UN A to UN B in Dg p if one exists.

Otherwise, break.

Update M « Switch(M, P).

Return M.

@ Steps 2, 4 and 6 can all be done in O(|E|) time. (Exercise!)

@ Step 5 can be done in O(|E|) time using breadth-first search, if G is
in adjacency-list form.

@ Steps 4-6 repeat at most |V/| times.
So overall the running time is O(|E|| V).

John Lapinskas Finding maximum matchings 11/13

Berge’s Lemma: M has no augmenting paths = M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M’ be another matching which is maximum, so |M'| > |M].
Consider the symmetric difference S = M A M, i.e. the graph formed of
edges contained in either M or M’ but not both.

™

Since each vertex is in at most one M edge and at most one M’ edge, S
has maximum degree at most 2.

So S is a disjoint union of path and cycle components.

John Lapinskas Finding maximum matchings 12/13

Berge’s Lemma: M has no augmenting paths = M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M’ be another matching which is maximum, so |M'| > |M].
Consider the symmetric difference S = M A M, i.e. the graph formed of
edges contained in either M or M’ but not both.

Since M and M’ are matchings, each component’s edges must alternate
between M’ and M. (In particular, no odd cycles!)

John Lapinskas Finding maximum matchings 12/13

Berge’s Lemma: M has no augmenting paths = M is maximum.
We suppose M is not maximum, and find an augmenting path.

Let M’ be another matching which is maximum, so |M'| > |M].
Consider the symmetric difference S = M A M, i.e. the graph formed of
edges contained in either M or M’ but not both.

Since |[M'| > |M|, some component C has more M’-edges than M-edges.
Since M’-edges and M-edges alternate, it has exactly one more M'-edge.

G is bipartite, so it has no odd cycles, so C must be a path starting and
ending with an M’-edge — an augmenting path. 0J

John Lapinskas Finding maximum matchings 12/13

Recall that given a graph G, we proved that MAXMATCHING returns a
matching M for G with no augmenting path in time O(|E||V]).

Berge's Lemma tells us that M is maximum, so we're done!

Let us celebrate with a matching pair of kittens.

D’awww.

John Lapinskas Finding maximum matchings

