
Minimum Spanning Trees I: Prim’s algorithm
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Prim’s algorithm 1 / 1

Motivation

Say you’re trying to build a regional power grid for Moravia, like Otakar
Bor̊uvka in 1926.

John Lapinskas Prim’s algorithm 2 / 1

Motivation

Say you’re trying to build a regional power grid for Moravia, like Otakar
Bor̊uvka in 1926.

You need every town to be connected to every other town, and you want to
spend as little as possible.

John Lapinskas Prim’s algorithm 2 / 1

Motivation

Say you’re trying to build a regional power grid for Moravia, like Otakar
Bor̊uvka in 1926.

You need every town to be connected to every other town, and you want to
spend as little as possible. So you want something like this,

John Lapinskas Prim’s algorithm 2 / 1

Motivation

Say you’re trying to build a regional power grid for Moravia, like Otakar
Bor̊uvka in 1926.

You need every town to be connected to every other town, and you want to
spend as little as possible. So you want something like this, not like this.

John Lapinskas Prim’s algorithm 2 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)...

whose total weight
∑

e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)...

whose total weight
∑

e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Formal definition

We think of this situation as a connected weighted graph G = ((V ,E),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)

4

1 2

6

4 7

3 2

1
5

2
3

Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T) = V (a spanning
tree)... whose total weight

∑
e∈E(T) w(e) is as small as possible.

This is called a minimum spanning tree.

John Lapinskas Prim’s algorithm 3 / 1

Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1

Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1

Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1

Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1

Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1

Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti) to V \ V (Ti).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti) ∪ ei and E (Ti+1) = E (Ti) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |. Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).

John Lapinskas Prim’s algorithm 6 / 1

Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti) to V \ V (Ti).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti) ∪ ei and E (Ti+1) = E (Ti) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |.

Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).

John Lapinskas Prim’s algorithm 6 / 1

Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti) to V \ V (Ti).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti) ∪ ei and E (Ti+1) = E (Ti) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |. Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).

John Lapinskas Prim’s algorithm 6 / 1

Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti) to V \ V (Ti).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti) ∪ ei and E (Ti+1) = E (Ti) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |. Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).

John Lapinskas Prim’s algorithm 6 / 1

Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti) to V \ V (Ti).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti) ∪ ei and E (Ti+1) = E (Ti) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |. Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).

John Lapinskas Prim’s algorithm 6 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |

T1T2T3T4T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

S

S1S2S3S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |

T1T2T3T4T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

S

S1S2S3S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |

T1

T2T3T4T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

S

S1

S2S3S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1

T2

T3T4T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1

S2

S3S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2

T3

T4T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2

S3

S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3

T4

T5T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3

S4

S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4

T5

T5T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4

S5

S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7

I = 5

I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5

I = 5

I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5

I = 5

I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5

I = 5

I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: True by Prim’s choice of eI−1. ✓

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5

I = 5

I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: True by Prim’s choice of eI−1. ✓

Still a tree: Since there is only one edge f , S[V \ V (SI−1)] is a tree as well
(by the FLoT). Joining two disjoint trees by an edge gives another
tree (by the FLoT). ✓

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5

T5

T6T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5

S5

S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5T5

T6

T7T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5S5

S6

S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5T5T6

T7

T7

4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5S5S6

S7

S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5T5T6T7

T7 4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5S5S6S7

S7

I = 5I = 5

I = 7

S = T7S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5T5T6T7

T7 4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5S5S6S7

S7

I = 5I = 5I = 7

S = T7

S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.

4

1 2

6

4 7

3 2

1
5

2
3

T|V |T1T2T3T4T5T5T6T7

T7 4

1 2

6

4 7

3 2

1
5

2
3

SS1S2S3S4S5S5S6S7

S7

I = 5I = 5I = 7S = T7

S = T7

f

e4

Let Si = S[V (Ti)], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.
Hence w(S) ≥ w(T|V |). Since S was minimum, we’re done!

John Lapinskas Prim’s algorithm 7 / 1

Prim’s algorithm: Implementation

Literally just breadth-first search with a priority queue!

Algorithm: BFS

Input : Connected weighted graph G = ((V ,E),w).
Output : A minimum spanning tree for G .

1 Number the vertices of G arbitrarily as v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a length-|E | priority queue containing all tuples (v1, vj) with {v1, vj} ∈ E ,
5 using their edge weights as priorities.
6 while queue is not empty do
7 Remove front tuple (vi , vj) from queue.
8 if L[j] =∞ then
9 Add (vj , vk) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.

John Lapinskas Prim’s algorithm 8 / 1

Prim’s algorithm: Implementation

Literally just breadth-first search with a priority queue!

Algorithm: BFS

Input : Connected weighted graph G = ((V ,E),w).
Output : A minimum spanning tree for G .

1 Number the vertices of G arbitrarily as v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a length-|E | priority queue containing all tuples (v1, vj) with {v1, vj} ∈ E ,
5 using their edge weights as priorities.
6 while queue is not empty do
7 Remove front tuple (vi , vj) from queue.
8 if L[j] =∞ then
9 Add (vj , vk) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.

Time analysis: As with breadth-first search, each edge is only processed
twice. Processing each edge now takes Θ(log |E |) worst-case time, so overall
the algorithm runs in O(|E | log |E |) time. (Note |E | ≥ |V |.)

John Lapinskas Prim’s algorithm 8 / 1

Prim’s algorithm: Implementation

Literally just breadth-first search with a priority queue!

Algorithm: BFS

Input : Connected weighted graph G = ((V ,E),w).
Output : A minimum spanning tree for G .

1 Number the vertices of G arbitrarily as v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a length-|E | priority queue containing all tuples (v1, vj) with {v1, vj} ∈ E ,
5 using their edge weights as priorities.
6 while queue is not empty do
7 Remove front tuple (vi , vj) from queue.
8 if L[j] =∞ then
9 Add (vj , vk) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.

Like with Dijkstra, we could “improve” this to O(|E | + |V | log |V |) time
(with a much worse constant) by using a Fibonacci heap in place of the
priority queue.

John Lapinskas Prim’s algorithm 8 / 1

