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Motivation

Say you’re trying to build a regional power grid for Moravia, like Otakar
Bor̊uvka in 1926.
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Formal definition

We think of this situation as a connected weighted graph G = ((V ,E ),w):
the vertices are towns, and w(x , y) is the cost of building a connection
from x to y . (In this case, E would contain every possible edge.)
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Total weight:

4 + 2 + 7 + 3 + 6 + 5 = 27

Total weight:

4 + 1 + 2 + 2 + 1 + 3 = 13

In other words, we seek a subtree T of G with V (T ) = V (a spanning
tree)... whose total weight

∑
e∈E(T ) w(e) is as small as possible.

This is called a minimum spanning tree.
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Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1



Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1



Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1



Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1



Wait a second...

Strictly speaking, this might not be the best possible solution.

What if we could introduce new vertices?

This version of the problem is called minimum Steiner tree. But:

this is “NP-hard” (read: no polynomial-time algorithm);

all the approximation algorithms are based on minimum spanning tree;

using a minimum spanning tree is already “good enough” — at worst
twice the weight of a minimum Steiner tree (see problem sheet).

John Lapinskas Prim’s algorithm 4 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.
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When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We work greedily: pick an arbitrary start vertex, then grow it into a
spanning tree by always choosing one of the cheapest available edges.

4

1 2

6

4 7

3 2

1
5

2
3

When there’s a tie, we break it arbitrarily.
(The choice will only affect which minimum spanning tree we get.)

John Lapinskas Prim’s algorithm 5 / 1



Prim’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

Formally: Let T1 = ({v}, ∅) for some arbitrary v ∈ V .

Let Ei be the set of edges from V (Ti ) to V \ V (Ti ).

Form Ti+1 by adding a lowest-weight edge ei ∈ Ei to Ti , so
V (Ti+1) = V (Ti ) ∪ ei and E (Ti+1) = E (Ti ) ∪ {ei}.

Prim’s algorithm is to calculate and return T|V |. Why does this work?

It returns a spanning tree because it’s basically breadth-first search!
We just pick a lowest-weight edge at each stage rather than using a queue.

To prove it’s a minimum spanning tree, we use an exchange argument.

That is, we show we can turn any minimum spanning tree into T|V |
without increasing its weight (like with interval scheduling).
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Prim’s algorithm: Correctness II

T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.
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S1S2S3S4S5S5S6S7S7I = 5I = 5I = 7S = T7S = T7

f

e4

Let Si = S[V (Ti )], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.
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Let Si = S[V (Ti )], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: True by Prim’s choice of eI−1. ✓
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Let Si = S[V (Ti )], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: True by Prim’s choice of eI−1. ✓

Still a tree: Since there is only one edge f , S[V \ V (SI−1)] is a tree as well
(by the FLoT). Joining two disjoint trees by an edge gives another
tree (by the FLoT). ✓
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the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.
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Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.
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Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .
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so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓
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Let Si = S[V (Ti )], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.
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T|V | is minimum: Let S be a minimum spanning tree with S ̸= T|V |.
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Let Si = S[V (Ti )], and let I = min{i : Si ̸= Ti}.
We have S1 = T1 and S|V | ̸= T|V |, so 2 ≤ I ≤ |V |.

Let v be the vertex added to TI−1 by Prim’s algorithm, so V (TI ) = V (TI−1) ∪ {v}. Let C be
the component of S − V (SI−1) containing v .

Since S is a tree, it’s connected, so there must be an edge f from C to SI−1. S has no cycles,
so f must be the only such edge. Remove f and replace it with eI−1.

Weight doesn’t increase: ✓ Still a tree: ✓

So S is now a spanning tree which is “one edge closer” to T|V |.

By repeating the process, we can turn S into T|V | without increasing its weight.
Hence w(S) ≥ w(T|V |). Since S was minimum, we’re done!
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Prim’s algorithm: Implementation

Literally just breadth-first search with a priority queue!

Algorithm: BFS

Input : Connected weighted graph G = ((V ,E),w).
Output : A minimum spanning tree for G .

1 Number the vertices of G arbitrarily as v1, . . . , vn.
2 Let L[i]←∞ for all i ∈ [n].
3 Let L[1]← 0, pred[1]← None.
4 Let queue be a length-|E | priority queue containing all tuples (v1, vj ) with {v1, vj} ∈ E ,
5 using their edge weights as priorities.
6 while queue is not empty do
7 Remove front tuple (vi , vj ) from queue.
8 if L[j] =∞ then
9 Add (vj , vk ) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.
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6 while queue is not empty do
7 Remove front tuple (vi , vj ) from queue.
8 if L[j] =∞ then
9 Add (vj , vk ) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.

Time analysis: As with breadth-first search, each edge is only processed
twice. Processing each edge now takes Θ(log |E |) worst-case time, so overall
the algorithm runs in O(|E | log |E |) time. (Note |E | ≥ |V |.)
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6 while queue is not empty do
7 Remove front tuple (vi , vj ) from queue.
8 if L[j] =∞ then
9 Add (vj , vk ) to queue for all {vj , vk} ∈ E , k ̸= i .

10 Set L[j]← L[i] + 1, pred[j] = i .

11 Return pred.

Like with Dijkstra, we could “improve” this to O(|E | + |V | log |V |) time
(with a much worse constant) by using a Fibonacci heap in place of the
priority queue.
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