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Motivation

Minimum spanning tree is like the opposite of interval scheduling —
almost any greedy approach will yield a working algorithm.

But we already have a good algorithm: Prim’s runs in O(|E | log |E |) time,
and we can’t beat O(|E |) time since we need to read the input.

So why am I bothering to teach you Kruskal’s algorithm as well?

It has slightly better constant factors (debatably);

It’s an application of a cool and useful data structure;

The really good algorithms use ideas from both Prim and Kruskal.
(More on this next week!)

Interviewers might expect you to know it...
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Kruskal’s algorithm: The idea

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

We are even more greedy than in Prim’s algorithm.

Rather than picking the lowest-weight edge that grows our component, we
just pick the lowest-weight edge anywhere that doesn’t make a cycle.
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Kruskal’s algorithm: Formal version and correctness

Input: A connected weighted graph G = ((V ,E),w). Output: A minimum spanning tree of G .

A minimum spanning tree is a subtree T of G covering all of G ’s vertices,
whose total weight

∑
e∈E(T ) w(e) is as small as possible.

Formally: Let e1, . . . , em be the edges of G , with w(e1) ≤ · · · ≤ w(em).

Let T0 = (V , ∅) be the empty graph on V .
Given Ti , let Ti+1 = Ti + ei+1 if this is a forest, or Ti otherwise.

Kruskal’s algorithm is to calculate and return Tm. Why does this work?

Tm is a spanning tree: Suppose not, for a contradiction.

By construction, Tm has no cycles and V (Tm) = V , so Tm must have at
least two components C1 and C2 (both of which are trees).

Since G is connected, it must contain an edge ei between C1 and C2.
Tm + ei contains no cycles since C1 and C2 are trees, so nor does
Ti−1 + ei , so we should have ei ∈ E (Ti ) — a contradiction.
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Kruskal’s algorithm: Correctness II

Tm is minimum: Again we will use an exchange argument.

Let S be a minimum spanning tree with S ̸= Tm. We will turn S into a
tree S+ with one more edge in common with Tm, and w(S+) ≤ w(S).

By repeating the process, we prove: w(S) ≥ w(S+) ≥ · · · ≥ w(Tm),
and we’re done.

Key fact: If we add an edge to S , we create exactly one cycle C .
If we then remove any other edge from C , the result is a tree.
(See problem sheet.)

Since Tm ̸= S and both have |V | − 1 edges by the FLoT, there must be
an edge e ∈ E (Tm) \ E (S). Let C be the unique cycle in S + e.

4
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310

S
G − S

Tm − S

S+

e

f /∈ E (Tm)

Since Tm has no cycles, there must be some edge f ∈ E (C ) \ E (Tm).

Since Kruskal’s algorithm added e instead of f , we have w(e) ≤ w(f ).
We therefore take S+ = S − f + e.
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Since Tm ̸= S and both have |V | − 1 edges by the FLoT, there must be
an edge e ∈ E (Tm) \ E (S). Let C be the unique cycle in S + e.

4
5

3

6
2

6
310

S
G − S
Tm − S

S+

e

f /∈ E (Tm)

Since Tm has no cycles, there must be some edge f ∈ E (C ) \ E (Tm).

Since Kruskal’s algorithm added e instead of f , we have w(e) ≤ w(f ).
We therefore take S+ = S − f + e.
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