Making Kruskal's algorithm fast COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Implementing Kruskal's algorithm

Algorithm: KRUSKAL

Input : Connected weighted graph $G=((V, E), w)$ in adjacency list form.

Output : A minimum spanning tree for G.
1 Sort the edges by weight as e_{1}, \ldots, e_{m}, with $w\left(e_{1}\right) \leq \cdots \leq w\left(e_{m}\right)$.
2 Let $T \leftarrow(V, \emptyset)$ be the empty tree on V.
3 for $i=1$ to m do
4 if $T+e_{i}$ has no cycles then
Let $T \leftarrow T+e_{i}$.
6 Return T.

Lines 1,2 and 6 take $O(|E| \log |E|)$ time, and lines $3-5$ repeat $|E|$ times.
We could implement line 4 with BFS... but this would take $\Theta(|E|)$ time, giving us a worst-case running time of $\Theta\left(|E|^{2}\right)$. That's bad.

Implementing Kruskal's algorithm: Take 2

Idea: Joining two tree components with an edge will never add a cycle, and adding an edge inside a tree component will always add one.

So when we consider an edge e_{i} to T, we just need to make sure both endpoints aren't in the same component - this implementation will work:

Algorithm: KruSkal
Input : Connected weighted graph $G=((V, E), w)$ in adjacency list form.
Output : A minimum spanning tree for G.
1 Sort the edges by weight as e_{1}, \ldots, e_{m}, with $w\left(e_{1}\right) \leq \cdots \leq w\left(e_{m}\right)$.
2 Let $T \leftarrow(V, \emptyset)$ be the empty tree on V.
3 Let $\mathcal{C} \leftarrow$ the set of T 's components.
4 for $i=1$ to m do
Let C_{1} and C_{2} be the components containing e_{i} 's endpoints in \mathcal{C}.
if $C_{1} \neq C_{2}$ then
Let $T \leftarrow T+e_{i}$.
Merge C_{1} and C_{2} in \mathcal{C}.
9 Return T.

The key problem

```
Algorithm: Kruskal
Input : Connected weighted graph \(G=((V, E), w)\) in adjacency list form.
Output : A minimum spanning tree for \(G\).
1 Sort the edges by weight as \(e_{1}, \ldots, e_{m}\), with \(w\left(e_{1}\right) \leq \cdots \leq w\left(e_{m}\right)\).
2 Let \(T \leftarrow(V, \emptyset)\) be the empty tree on \(V\).
3 Let \(\mathcal{C} \leftarrow\) the set of \(T\) 's components.
4 for \(i=1\) to \(m\) do
    Let \(C_{1}\) and \(C_{2}\) be the components containing \(e_{i}\) 's endpoints in \(\mathcal{C}\).
    if \(C_{1} \neq C_{2}\) then
        Let \(T \leftarrow T+e_{i}\).
        Merge \(C_{1}\) and \(C_{2}\) in \(\mathcal{C}\).
9 Return \(T\).
```

But how do we implement \mathcal{C} ?
A linked list for each component? Then merging will take $O(1)$ time, but finding C_{1} and C_{2} could take $\Omega(|V|)$ time, giving a runtime of $\Omega(|V||E|)$.

An array for each component? Then finding C_{1} and C_{2} will take $O(1)$ time, but merging will take $\Omega(|V|)$, so we still get $\Omega(|V||E|)$ overall...

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

1	2	3	4	5	6
$\left\{v_{1}\right\}$	$\left\{v_{2}\right\}$	$\left\{v_{3}\right\}$	$\left\{v_{4}\right\}$	$\left\{v_{5}\right\}$	$\left\{v_{6}\right\}$

MakeUnionFind $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$;

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

1	2	3	4	5	6
$\left\{v_{1}\right\}$	$\left\{v_{2}\right\}$	$\left\{v_{3}\right\}$	$\left\{v_{4}\right\}$	$\left\{v_{5}\right\}$	$\left\{v_{6}\right\}$

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

$$
\begin{array}{ccccc}
1 & 3 & 4 & 5 & 6 \\
\left\{v_{1}, v_{2}\right\} & \left\{v_{3}\right\} & \left\{v_{4}\right\} & \left\{v_{5}\right\} & \left\{v_{6}\right\}
\end{array}
$$

Union $\left(v_{1}, v_{2}\right)$;

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

$$
\begin{array}{cccc}
1 & 4 & 7 & 6 \\
\left\{v_{1}, v_{2}\right\} & \left\{v_{4}\right\} & \left\{v_{3}, v_{5}\right\} & \left\{v_{6}\right\}
\end{array}
$$

Union $\left(v_{3}, v_{5}\right)$;

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

$$
\begin{array}{ccc}
42 & 7 & 6 \\
\left\{v_{1}, v_{2}, v_{4}\right\} & \left\{v_{3}, v_{5}\right\} & \left\{v_{6}\right\}
\end{array}
$$

$$
\operatorname{Union}\left(v_{4}, v_{2}\right) ;
$$

Note that Union may affect set identifiers unpredictably!

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

Union(v_{5}, v_{6});
Note that Union may affect set identifiers unpredictably!

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

FindSet $\left(v_{2}\right) ; \quad$ Returns 42.
Note that Union may affect set identifiers unpredictably!

The solution

We need to use a union-find data structure, also known as a disjoint-set or merge-find data structure. It supports the following operations:

- MakeUnionFind (X) : Makes a new union-find data structure containing a 1-element set $\{x\}$ for each element $x \in X$.
- Union (x, y) : Merge the set containing x and the set containing y.
- FindSet (x) : Returns a unique identifier for the set containing x.

> 42
> $\left\{v_{1}, v_{2}, v_{4}\right\}$

$$
\left\{v_{3}, v_{5}, v_{6}\right\}
$$

FindSet(v_{5});

Returns -bl
Note that Union may affect set identifiers unpredictably!
MakeUnionFind takes $O(|X|)$ time, and Union and FindSet take $O(\log |X|)$ time. (It is also possible to add elements dynamically, but we won't need to.) So if we use this for $\mathcal{C} \ldots$

Implementing Kruskal's algorithm: Third time lucky!

```
Algorithm: Kruskal
Input : Connected weighted graph \(G=((V, E), w)\) in adjacency list form.
Output : A minimum spanning tree for \(G\).
1 Sort the edges by weight as \(e_{1}, \ldots, e_{m}\), with \(w\left(e_{1}\right) \leq \cdots \leq w\left(e_{m}\right)\).
2 Let \(T \leftarrow(V, \emptyset)\) be the empty tree on \(V\).
3 Let \(\mathcal{C}=\) MakeUnionFind \((V)\).
4 for \(i=1\) to \(m\) do
    Write \(e_{i} \rightarrow\left\{u_{i}, v_{i}\right\}\).
    if \(\mathcal{C}\).FindSet \(\left(u_{i}\right) \neq \mathcal{C}\).FindSet \(\left(v_{i}\right)\) then
        Let \(T \leftarrow T+e_{i}\).
            Call \(\mathcal{C}\).Union \(\left(u_{i}, v_{i}\right)\).
9 Return \(T\).
```

Now line 3 takes $O(|V|)$ time, and each iteration of lines 6 and 8 takes $O(\log |V|)$ time.

So overall, since G is connected and $|E| \geq|V|-1$, the running time is $O(|E| \log |V|)$ - exactly what we got from Prim's algorithm!

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Step 1

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Step 1

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Step 1

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Step 1

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Step 1

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Non-examinable: Borůvka's algorithm

Neither Kruskal's algorithm and Prim's algorithm parallelise effectively.
But Borůvka's original algorithm, from 40 years earlier, works nicely.
At each step, it simultaneously finds and adds the cheapest edge out of each component of the output tree T.

Done!

Most modern algorithms for minimum spanning tree are variants of Bori̊vka's algorithm...and they use a union-find data structure to keep track of the components! So it is useful, after all.

