
Making Kruskal’s algorithm fast
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Making Kruskal fast 1 / 7

Implementing Kruskal’s algorithm

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 for i = 1 to m do
4 if T + ei has no cycles then
5 Let T ← T + ei .

6 Return T .

Lines 1, 2 and 6 take O(|E | log |E |) time, and lines 3–5 repeat |E | times.

We could implement line 4 with BFS... but this would take Θ(|E |) time,
giving us a worst-case running time of Θ(|E |2). That’s bad.

John Lapinskas Making Kruskal fast 2 / 7

Implementing Kruskal’s algorithm

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 for i = 1 to m do
4 if T + ei has no cycles then
5 Let T ← T + ei .

6 Return T .

Lines 1, 2 and 6 take O(|E | log |E |) time, and lines 3–5 repeat |E | times.

We could implement line 4 with BFS...

but this would take Θ(|E |) time,
giving us a worst-case running time of Θ(|E |2). That’s bad.

John Lapinskas Making Kruskal fast 2 / 7

Implementing Kruskal’s algorithm

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 for i = 1 to m do
4 if T + ei has no cycles then
5 Let T ← T + ei .

6 Return T .

Lines 1, 2 and 6 take O(|E | log |E |) time, and lines 3–5 repeat |E | times.

We could implement line 4 with BFS... but this would take Θ(|E |) time,
giving us a worst-case running time of Θ(|E |2). That’s bad.

John Lapinskas Making Kruskal fast 2 / 7

Implementing Kruskal’s algorithm: Take 2

Idea: Joining two tree components with an edge will never add a cycle,
and adding an edge inside a tree component will always add one.

So when we consider an edge ei to T , we just need to make sure both
endpoints aren’t in the same component — this implementation will work:

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

John Lapinskas Making Kruskal fast 3 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component? Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component? Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component? Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component? Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component?

Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component? Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component? Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component? Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component? Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component?

Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The key problem

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C ← the set of T ’s components.
4 for i = 1 to m do
5 Let C1 and C2 be the components containing ei ’s endpoints in C.
6 if C1 ̸= C2 then
7 Let T ← T + ei .
8 Merge C1 and C2 in C.

9 Return T .

But how do we implement C?

A linked list for each component? Then merging will take O(1) time, but
finding C1 and C2 could take Ω(|V |) time, giving a runtime of Ω(|V ||E |).

An array for each component? Then finding C1 and C2 will take O(1)
time, but merging will take Ω(|V |), so we still get Ω(|V ||E |) overall...

John Lapinskas Making Kruskal fast 4 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);

FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);

FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);

FindSet(v5);

FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);

FindSet(v5); Returns 5.

Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.

Union(v1, v2);

Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 61
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.

Union(v1, v2);

Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2} {v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2} {v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);

Union(v3, v5);

Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}

1 4 67
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);

Union(v3, v5);

Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}

1 4 6

7
{v3, v5}

7
{v3, v5}{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}
42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);

Union(v4, v2);

Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}

7 642
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);

Union(v4, v2);

Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4} {v3, v5} {v6}

42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}

7 6

42
{v1, v2, v4}

42
{v1, v2, v4} {v3, v5} {v6}

42

{v3, v5, v6}{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);

Union(v5, v6);

FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42
{v3, v5, v6}

{v3, v5, v6}

{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);

Union(v5, v6);

FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);

FindSet(v2);

FindSet(v2); Returns 42.FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);

FindSet(v2); Returns 42.

FindSet(v5);FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.

FindSet(v5);

FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);

FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

The solution

We need to use a union-find data structure, also known as a disjoint-set
or merge-find data structure. It supports the following operations:

MakeUnionFind(X): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .

Union(x , y): Merge the set containing x and the set containing y .

FindSet(x): Returns a unique identifier for the set containing x .

1 2 3 4 5 6
{v1} {v2} {v3} {v4} {v5} {v6}

3 4 5 6

1
{v1, v2}

1
{v1, v2}

{v3} {v4} {v5} {v6}
1 4 6

7
{v3, v5}

7
{v3, v5}

{v1, v2} {v4} {v6}
7 6

42
{v1, v2, v4}

42
{v1, v2, v4}

{v3, v5} {v6}

42

{v3, v5, v6}

{v3, v5, v6}{v1, v2, v4}

MakeUnionFind(v1, v2, v3, v4, v5, v6);FindSet(v5);FindSet(v5); Returns 5.Union(v1, v2);Union(v3, v5);Union(v4, v2);Union(v5, v6);FindSet(v2);FindSet(v2); Returns 42.FindSet(v5);

FindSet(v5); Returns .

Note that Union may affect set identifiers unpredictably!

MakeUnionFind takes O(|X |) time, and Union and FindSet take
O(log |X |) time. (It is also possible to add elements dynamically, but we
won’t need to.) So if we use this for C...

John Lapinskas Making Kruskal fast 5 / 7

Implementing Kruskal’s algorithm: Third time lucky!

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C = MakeUnionFind(V).
4 for i = 1 to m do
5 Write ei → {ui , vi}.
6 if C.FindSet(ui) ̸= C.FindSet(vi) then
7 Let T ← T + ei .
8 Call C.Union(ui , vi).

9 Return T .

Now line 3 takes O(|V |) time, and each iteration of lines 6 and 8 takes
O(log |V |) time.

So overall, since G is connected and |E | ≥ |V | − 1, the running time is
O(|E | log |V |) — exactly what we got from Prim’s algorithm!

John Lapinskas Making Kruskal fast 6 / 7

Implementing Kruskal’s algorithm: Third time lucky!

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C = MakeUnionFind(V).
4 for i = 1 to m do
5 Write ei → {ui , vi}.
6 if C.FindSet(ui) ̸= C.FindSet(vi) then
7 Let T ← T + ei .
8 Call C.Union(ui , vi).

9 Return T .

Now line 3 takes O(|V |) time, and each iteration of lines 6 and 8 takes
O(log |V |) time.

So overall, since G is connected and |E | ≥ |V | − 1, the running time is
O(|E | log |V |) — exactly what we got from Prim’s algorithm!

John Lapinskas Making Kruskal fast 6 / 7

Implementing Kruskal’s algorithm: Third time lucky!

Algorithm: Kruskal

Input : Connected weighted graph G = ((V ,E),w) in adjacency list form.
Output : A minimum spanning tree for G .

1 Sort the edges by weight as e1, . . . , em, with w(e1) ≤ · · · ≤ w(em).
2 Let T ← (V , ∅) be the empty tree on V .
3 Let C = MakeUnionFind(V).
4 for i = 1 to m do
5 Write ei → {ui , vi}.
6 if C.FindSet(ui) ̸= C.FindSet(vi) then
7 Let T ← T + ei .
8 Call C.Union(ui , vi).

9 Return T .

Now line 3 takes O(|V |) time, and each iteration of lines 6 and 8 takes
O(log |V |) time.

So overall, since G is connected and |E | ≥ |V | − 1, the running time is
O(|E | log |V |) — exactly what we got from Prim’s algorithm!

John Lapinskas Making Kruskal fast 6 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1

Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...

and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

Non-examinable: Bor̊uvka’s algorithm

Neither Kruskal’s algorithm and Prim’s algorithm parallelise effectively.

But Bor̊uvka’s original algorithm, from 40 years earlier, works nicely.

At each step, it simultaneously finds and adds the cheapest edge out of
each component of the output tree T .

Step 1Step 2

Done!

4

1 2

6

4 7

3 2

1
5

2
3

Most modern algorithms for minimum spanning tree are variants of
Bor̊uvka’s algorithm...and they use a union-find data structure to keep
track of the components! So it is useful, after all.

John Lapinskas Making Kruskal fast 7 / 7

