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Last time...

A union-find data structure supports the following operations:

MakeUnionFind(X ): Makes a new union-find data structure
containing a 1-element set {x} for each element x ∈ X .
Takes O(|X |) time.

Union(x , y): Merge the set containing x with the set containing y
into a single set in the data structure. Takes O(log |X |) time.

FindSet(x): Returns a unique identifier for the set containing x .
Takes O(log |X |) time.

Set identifiers can be anything as long as they’re unique.

If we implement the sets as linked lists, then FindSet is too slow. If we
implement them as arrays, then Union is too slow.

We’ll take the pointer structure of a linked list to make Union fast, but
arrange it differently to make FindSet fast as well.
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The idea

We will implement the data structure not as a set of linked lists, but as a
forest in which the elements are vertices and the sets are components.
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MakeUnionFind(x1, x2, x3, x4, x5, x6, x7, x8);FindSet(x3);FindSet(x3); Returns x3.Union(x1, x2);Union(x1, x4);FindSet(x4);FindSet(x4); Returns x1.Union(x5, x8); Union(x8, x7); Union(x6, x8);Union(x4, x7);FindSet(x6);FindSet(x6); Returns x1.

MakeUnionFind(X ) makes an isolated vertex for each element of X .

FindSet(x) returns the root of x ’s tree as its identifier.

Union(xi , xj) puts the root of xi under the root of xj (or vice versa).

Union and FindSet both take Θ(d) time, where d is the maximum depth
of the tree components involved. How big can this be?
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Proof that d = O(log |X |)
Union(x1, x2) follows pointers from x1 and x2 up to the roots r1 and r2 of their trees. If x1’s tree
has lower depth than x2’s tree, then it adds r1 as a child of r2; if not, it adds r2 as a child of r1.

Writing d1 for the depth of x1’s tree, and d2 for the depth of x2’s tree, if d1 < d2
then the depth of the new tree will be max{d2, d1 + 1} = d2.

Likewise, if d2 < d1 then the new depth will be max{d1, d2 + 1} = d1.

The depth only increases if d1 = d2.

Lemma: If the data structure contains a tree of depth d , then it has
at least 2d vertices in total.

Proof: By induction on d .

Base case: If d = 0, then the tree is a single vertex. ✓

Inductive step: A tree of depth d ≥ 1 must have been formed by merging two
trees of depth d − 1, each containing 2d−1 vertices by the inductive hypothesis.
So the tree must contain 2 · 2d−1 = 2d vertices.

This means any tree with depth greater than log |X | would contain more than
2log |X | = |X | vertices, which is impossible! So d ≤ log |X |.
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Summary

Overall, the operations of the union-find data structure are:

MakeUnionFind(X ) creates one isolated vertex for each x ∈ X .

FindSet(x) follows pointers from x up to the root of x ’s tree, which
it returns as a unique identifier.

Union(x1, x2) follows pointers from x1 and x2 up to the roots r1 and
r2 of their trees. If x1’s tree has lower depth than x2’s tree, then it
adds r1 as a child of r2; otherwise, it adds r2 as a child of r1.

MakeUnionFind runs in O(|X |) time. All trees in the data structure have
height at most log |X |, so Union and FindSet run in O(log |X |) time.

In particular, we can use this to implement Kruskal’s algorithm and
Bor̊uvka’s algorithm in O(|E | log |E |) time!
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A possible improvement: Path compression

Right now, we are duplicating some work with root-finding.

FindSet(x9);FindSet(x9); Returns x3.Union(x9, x5);FindSet(x4);FindSet(x4); Returns x3.We traverse these edges several times!FindSet(x9);FindSet(x9); Returns x3.Union(x9, x5);FindSet(x4);FindSet(x4); Returns x3.

x3

x2 x1

x7 x8 x6x4

x9

x4 x9

x5

x5

We could fix this by flattening our trees on each Union and FindSet operation,
making every vertex we pass through a child of the root.

This technique is called path compression.

This improves the running time of n operations from O(n log n) to O(nα(n)),
where α(n) is the inverse Ackermann function: α(n) = min{k : A(k, k) ≥ n}.
In practice, we always have α(n) ≤ 4.
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