2-3-4 trees I: Search and insertion COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.

Find 7 :
$\downarrow 7<10$: Check left half subarray

4	5	8	10	13	18	21

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.

Find 7 :

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.

Find 7:
$7 \neq 8$: Return Not found

4	5	8	10	13	18	21

Why can't we use this to implement a dictionary, storing an array of key-value pairs sorted by key?

Because we can't easily insert or remove things from the middle of the array - this takes $\Omega(n)$ time! And if we used a linked list instead... it would take $\Omega(n)$ time to find the halfway point. Instead, we can use a binary search tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.)

Find 7;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.)

Find 7;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.)

Find 7;
Not found.

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.)

Delete 21 ;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.) Insert 30;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.)

Insert 30;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.) Insert 30;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.

Binary search trees

Idea: Each node has $0-2$ children. If a node's value is x, then all its left descendants' values are $<x$, and all its right descendants' values are $>x$. (For simplicity, we assume all values are distinct.) Insert 22;
Insert 23; Insert 24;

Then we can still find nodes by binary search, but we can also insert and delete them in $O(d)$ time where d is the depth of the tree.
Ideally, if the tree has n elements, then all but the bottom layer is full the tree is balanced, as above. In that case,

$$
n \approx 2^{d}+2^{d-1}+\cdots+1=2^{d+1}-1 \Rightarrow d \in \Theta(\log n)
$$

Problem: What if that doesn't happen? We could get $d \in \Omega(n) \ldots$

2-3-4 trees

Idea: Force the tree to be perfectly balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain $k-1$ values (so a binary search tree is made entirely of 2 -nodes). We will allow $k \in\{2,3,4\}$.

Say a 3 -node has values $x_{1} \leq x_{2}$, and children c_{1}, c_{2} and c_{3}.
Then all descendants of c_{1} must have values at most $x_{1} \ldots$
All descendants of c_{2} must have values greater than x_{1} and less than $x_{2} \ldots$ And all descendants of c_{3} must have values greater than x_{3}.

4-nodes work the same way. So we can still find a value in $O(d)$ time.

2-3-4 trees

Idea: Force the tree to be perfectly balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain $k-1$ values (so a binary search tree is made entirely of 2 -nodes). We will allow $k \in\{2,3,4\}$.

Say a 3-node has values $x_{1} \leq x_{2}$, and children c_{1}, c_{2} and c_{3}.
Then all descendants of c_{1} must have values at most $x_{1} \ldots$
All descendants of c_{2} must have values greater than x_{1} and less than $x_{2} \ldots$ And all descendants of c_{3} must have values greater than x_{3}.

4-nodes work the same way. So we can still find a value in $O(d)$ time.

2-3-4 trees

Idea: Force the tree to be perfectly balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain $k-1$ values (so a binary search tree is made entirely of 2 -nodes). We will allow $k \in\{2,3,4\}$.

Say a 3-node has values $x_{1} \leq x_{2}$, and children c_{1}, c_{2} and c_{3}.
Then all descendants of c_{1} must have values at most $x_{1} \ldots$
All descendants of c_{2} must have values greater than x_{1} and less than $x_{2} \ldots$ And all descendants of c_{3} must have values greater than x_{3}.

4-nodes work the same way. So we can still find a value in $O(d)$ time.

2-3-4 trees

Idea: Force the tree to be perfectly balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain $k-1$ values (so a binary search tree is made entirely of 2 -nodes). We will allow $k \in\{2,3,4\}$.

Say a 3-node has values $x_{1} \leq x_{2}$, and children c_{1}, c_{2} and c_{3}.
Then all descendants of c_{1} must have values at most $x_{1} \ldots$
All descendants of c_{2} must have values greater than x_{1} and less than $x_{2} \ldots$ And all descendants of c_{3} must have values greater than x_{3}.

4-nodes work the same way. So we can still find a value in $O(d)$ time.

Inserting new values

Insert 22;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

Inserting new values

Insert 22;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

Inserting new values

Insert 23;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value. If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2-nodes.

Inserting new values

Insert 25;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2-nodes.

Inserting new values

Insert 26;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value. If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

Inserting new values

Insert 26;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3 -node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2-nodes.

Inserting new values

Insert 27;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2-nodes.

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3 -node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

Insert 29;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

Insert 30;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

Insert 31;

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3 -node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

Inserting new values

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2 -node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

If we have to split the root, d increases by 1 .

Inserting new values

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

If we have to split the root, d increases by 1 .

Inserting new values

To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and keeping the others as 2 -nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes $O(d)$ time.

If we have to split the root, d increases by 1 . But balance is maintained!

Summary of a 2-3-4 tree with distinct values (so far)

Finding a value v : Let x be the root. If $v \in x$, return a pointer to x. Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that x is a k-node, let $x_{1} \leq \cdots \leq x_{k-1}$ be the values in x, let $x_{0}=-\infty$, and let $x_{k}=\infty$; then $x_{i-1}<v<x_{i}$ for some i. Let c be the i 'th child of x. Then repeat the process from the start, taking $x=c$.

Inserting a value v : First attempt to find v as above, splitting any 4 -nodes encountered (including the root). After reaching a leaf L, and splitting it if it is a 4-node, add v to L.

Deleting a value v : Next time!

