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The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search
for a given value in O(log n) time with binary search.

Find 7:

7 < 10: Check left half subarray

7 > 5: Check right quarter subarray7 ̸= 8: Return Not found

4 5 8 10 13 18 21

Why can’t we use this to implement a dictionary, storing an array of
key-value pairs sorted by key?

Because we can’t easily insert or remove things from the middle of the
array — this takes Ω(n) time! And if we used a linked list instead... it
would take Ω(n) time to find the halfway point.

Instead, we can use a binary search tree.
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Binary search trees

Idea: Each node has 0–2 children. If a node’s value is x , then all its left
descendants’ values are < x , and all its right descendants’ values are > x .

(For simplicity, we assume all values are distinct.)

Find 7;

Not found.

Delete 21;Insert 30;Insert 22;

Insert 23;

Insert 24;
...

10

5 18

4 8 13 21

22 23 24

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

Ideally, if the tree has n elements, then all but the bottom layer is full —
the tree is balanced, as above. In that case,

n ≈ 2d + 2d−1 + · · ·+ 1 = 2d+1 − 1 ⇒ d ∈ Θ(log n).

Problem: What if that doesn’t happen? We could get d ∈ Ω(n)...
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2-3-4 trees

Idea: Force the tree to be perfectly balanced, with all levels full. To make
this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain k − 1 values (so a binary
search tree is made entirely of 2-nodes). We will allow k ∈ {2, 3, 4}.

Find 6;

Find 33;Find 33; Not found.

10

3 7 18 32 40

1 4 5 6 8 9 13 30 35 42 96

Say a 3-node has values x1 ≤ x2, and children c1, c2 and c3.

Then all descendants of c1 must have values at most x1...
All descendants of c2 must have values greater than x1 and less than x2...
And all descendants of c3 must have values greater than x3.

4-nodes work the same way. So we can still find a value in O(d) time.
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Inserting new values

Insert 22;

10

10 2210 22 26

22

10 26

5 18

18 2218 22 2418 2418 24 2624 26 2824 2828 30

4 8

8

13

1313

21

21 2221 22 2321 2323 2423 24 2521 2321 2323 2525 2625 26 2725 2727 2827 28 2927 2929 3029 30 3129 3131 32

To insert a value k, first we find the leaf that would contain it if it was
there. If it’s a 2-node or a 3-node, we can just add the new value.

If it’s a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we’re in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!

John Lapinskas 2-3-4 trees I 5 / 6



Inserting new values

Insert 22;

10

10 2210 22 26

22

10 26

5 18

18 2218 22 2418 2418 24 2624 26 2824 2828 30

4 8

8

13

1313 21

21 22

21 22 2321 2323 2423 24 2521 2321 2323 2525 2625 26 2725 2727 2827 28 2927 2929 3029 30 3129 3131 32

To insert a value k, first we find the leaf that would contain it if it was
there. If it’s a 2-node or a 3-node, we can just add the new value.

If it’s a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we’re in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!

John Lapinskas 2-3-4 trees I 5 / 6



Inserting new values
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Inserting new values
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To insert a value k, first we find the leaf that would contain it if it was
there. If it’s a 2-node or a 3-node, we can just add the new value.

If it’s a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we’re in trouble... so we split all 4-nodes
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Inserting new values

Insert 30;
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To insert a value k, first we find the leaf that would contain it if it was
there. If it’s a 2-node or a 3-node, we can just add the new value.

If it’s a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we’re in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!
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Inserting new values

Insert 31;
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To insert a value k, first we find the leaf that would contain it if it was
there. If it’s a 2-node or a 3-node, we can just add the new value.

If it’s a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we’re in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!
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Summary of a 2-3-4 tree with distinct values (so far)

10

3 7 18 32 40

1 4 5 6 8 9 13 30 35 42 96

Finding a value v : Let x be the root. If v ∈ x , return a pointer to x .
Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that
x is a k-node, let x1 ≤ · · · ≤ xk−1 be the values in x , let x0 = −∞, and
let xk = ∞; then xi−1 < v < xi for some i . Let c be the i ’th child of x .
Then repeat the process from the start, taking x = c .

Inserting a value v : First attempt to find v as above, splitting any
4-nodes encountered (including the root). After reaching a leaf L, and
splitting it if it is a 4-node, add v to L.

Deleting a value v : Next time!
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