2-3-4 trees I: Search and insertion COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

The limitations of binary search

From Algorithms I: If we have an *n*-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.

Find 7: \downarrow 7 < 10: Check left half subarray

4 5 8	10	13	18	21
-------	----	----	----	----

The limitations of binary search

From Algorithms I: If we have an *n*-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.

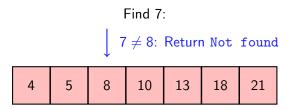
Find 7:

 $\begin{bmatrix} 7 > 5 \end{bmatrix}$ Check right quarter subarray

4	5	8	10	13	18	21
---	---	---	----	----	----	----

The limitations of binary search

From Algorithms I: If we have an *n*-element sorted array, we can search for a given value in $O(\log n)$ time with binary search.



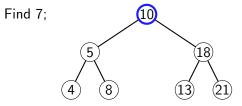
Why can't we use this to implement a dictionary, storing an array of key-value pairs sorted by key?

Because we can't easily insert or remove things from the middle of the array — this takes $\Omega(n)$ time! And if we used a linked list instead... it would take $\Omega(n)$ time to find the halfway point.

Instead, we can use a binary search tree.

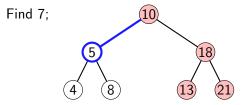
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



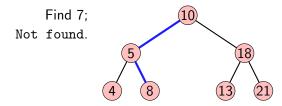
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



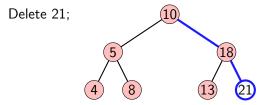
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



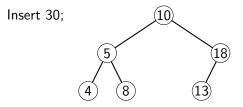
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



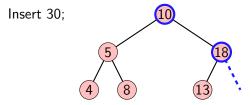
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



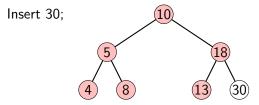
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



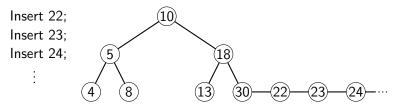
Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



Idea: Each node has 0–2 children. If a node's value is x, then **all** its left descendants' values are < x, and **all** its right descendants' values are > x.

(For simplicity, we assume all values are distinct.)



Then we can still find nodes by binary search, but we can also insert and delete them in O(d) time where d is the depth of the tree.

Ideally, if the tree has n elements, then all but the bottom layer is full — the tree is **balanced**, as above. In that case,

$$n \approx 2^d + 2^{d-1} + \cdots + 1 = 2^{d+1} - 1 \Rightarrow d \in \Theta(\log n).$$

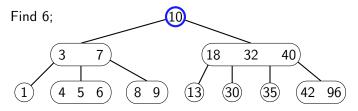
Problem: What if that doesn't happen? We could get $d \in \Omega(n)$...

John Lapinskas	2-3-4 trees I	
----------------	---------------	--

3/6

Idea: Force the tree to be **perfectly** balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A *k*-node can have up to *k* children and contain k - 1 values (so a binary search tree is made entirely of 2-nodes). We will allow $k \in \{2, 3, 4\}$.

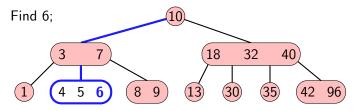


Say a 3-node has values $x_1 \leq x_2$, and children c_1 , c_2 and c_3 .

Then all descendants of c_1 must have values at most $x_1...$ All descendants of c_2 must have values greater than x_1 and less than $x_2...$ And all descendants of c_3 must have values greater than x_3 .

Idea: Force the tree to be **perfectly** balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A *k*-node can have up to *k* children and contain k - 1 values (so a binary search tree is made entirely of 2-nodes). We will allow $k \in \{2, 3, 4\}$.

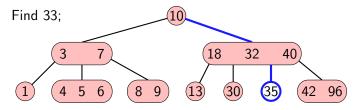


Say a 3-node has values $x_1 \leq x_2$, and children c_1 , c_2 and c_3 .

Then all descendants of c_1 must have values at most $x_1...$ All descendants of c_2 must have values greater than x_1 and less than $x_2...$ And all descendants of c_3 must have values greater than x_3 .

Idea: Force the tree to be **perfectly** balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A *k*-node can have up to *k* children and contain k - 1 values (so a binary search tree is made entirely of 2-nodes). We will allow $k \in \{2, 3, 4\}$.

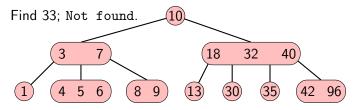


Say a 3-node has values $x_1 \leq x_2$, and children c_1 , c_2 and c_3 .

Then all descendants of c_1 must have values at most $x_1...$ All descendants of c_2 must have values greater than x_1 and less than $x_2...$ And all descendants of c_3 must have values greater than x_3 .

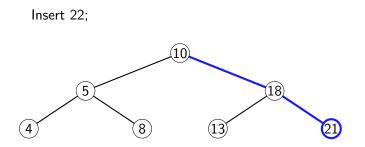
Idea: Force the tree to be **perfectly** balanced, with all levels full. To make this possible to maintain, allow nodes to contain more than one value.

A *k*-node can have up to *k* children and contain k - 1 values (so a binary search tree is made entirely of 2-nodes). We will allow $k \in \{2, 3, 4\}$.

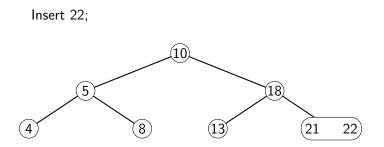


Say a 3-node has values $x_1 \leq x_2$, and children c_1 , c_2 and c_3 .

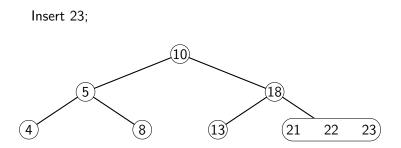
Then all descendants of c_1 must have values at most $x_1...$ All descendants of c_2 must have values greater than x_1 and less than $x_2...$ And all descendants of c_3 must have values greater than x_3 .



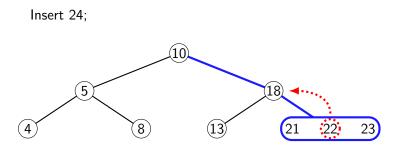
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



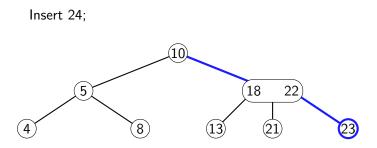
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



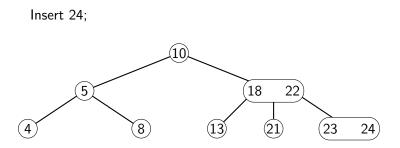
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



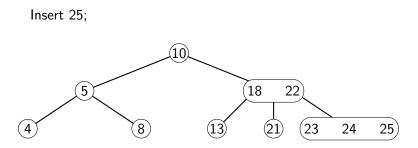
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



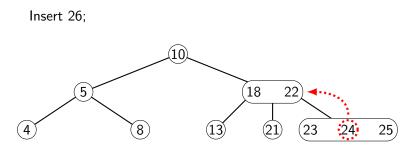
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



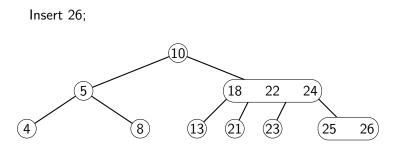
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



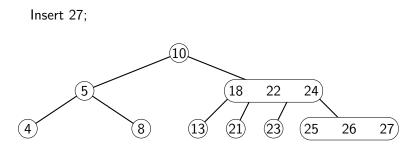
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



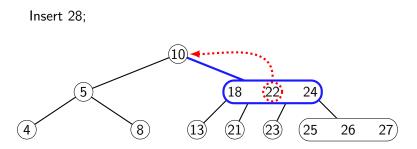
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

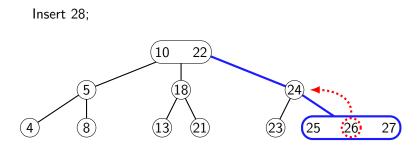


To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.



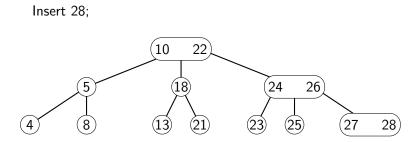
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.



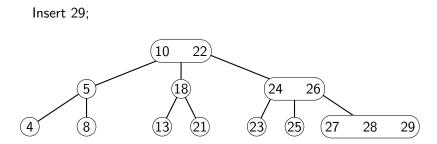
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.



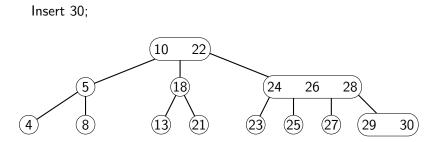
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.



To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

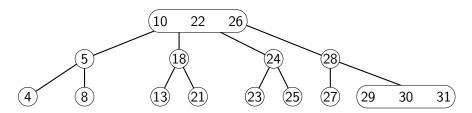
If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.



To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

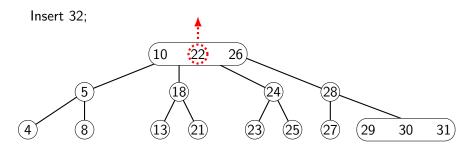
If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.

Insert 31;



To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.

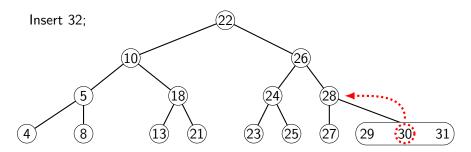


To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1.

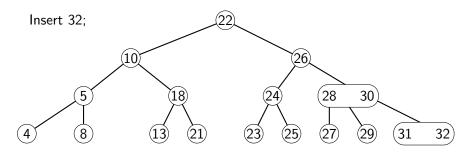


To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1.



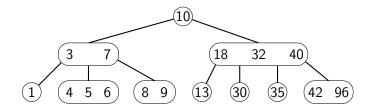
To insert a value k, first we find the leaf that would contain it if it was there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first **split** it, sending one value up to its parent and keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!

Summary of a 2-3-4 tree with distinct values (so far)



Finding a value *v*: Let *x* be the root. If $v \in x$, return a pointer to *x*. Otherwise, if *x* is a leaf, return Not Found. Otherwise, let *k* be such that *x* is a *k*-node, let $x_1 \leq \cdots \leq x_{k-1}$ be the values in *x*, let $x_0 = -\infty$, and let $x_k = \infty$; then $x_{i-1} < v < x_i$ for some *i*. Let *c* be the *i*'th child of *x*. Then repeat the process from the start, taking x = c.

Inserting a value v: First attempt to find v as above, **splitting** any 4-nodes encountered (including the root). After reaching a leaf L, and splitting it if it is a 4-node, add v to L.

Deleting a value *v*: Next time!