2-3-4 trees |: Search and insertion

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas 2-3-4 trees | 1/6

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search
for a given value in O(log n) time with binary search.

Find 7:
l 7 < 10: Check left half subarray

4 5 8 10 | 13 | 18 | 21

John Lapinskas 2-3-4 trees | 2/6

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search
for a given value in O(log n) time with binary search.

Find 7:
l 7 > 5: Check right quarter subarray

4 5 8 10 | 13 | 18 | 21

John Lapinskas 2-3-4 trees | 2/6

The limitations of binary search

From Algorithms I: If we have an n-element sorted array, we can search
for a given value in O(log n) time with binary search.

Find 7:

l 7 # 8: Return Not found

4 5 8 10 | 13 | 18 | 21

Why can't we use this to implement a dictionary, storing an array of
key-value pairs sorted by key?

Because we can't easily insert or remove things from the middle of the
array — this takes Q(n) time! And if we used a linked list instead... it
would take Q(n) time to find the halfway point.

Instead, we can use a binary search tree.

John Lapinskas 2-3-4 trees | 2/6

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Find 7; (10)
(5) 18
@ ® 3 @

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Find 7; (10)
(5) 18
@ ® B @

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)
Find 7; (10)
Not found.
(5] 18)
@ ® 3 @

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Delete 21; @

(5) 18
@ ® B @

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Insert 30;

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

3/6

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Insert 30;

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

3/6

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Insert 30; @
(5) 19
@ ©® 3 o

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

John Lapinskas 2-3-4 trees |

Binary search trees

Idea: Each node has 0-2 children. If a node's value is x, then all its left
descendants’ values are < x, and all its right descendants’ values are > x.

(For simplicity, we assume all values are distinct.)

Insert 22; @

Insert 23:

Insert 24; 6 @
@ ® @ G—2—E——

Then we can still find nodes by binary search, but we can also insert and
delete them in O(d) time where d is the depth of the tree.

Ideally, if the tree has n elements, then all but the bottom layer is full —
the tree is balanced, as above. In that case,

na29 4297 4 41 =291 1= d e O(logn).
Problem: What if that doesn’t happen? We could get d € Q(n)...

John Lapinskas 2-3-4 trees | 3/6

Idea: Force the tree to be perfectly balanced, with all levels full. To make
this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain k — 1 values (so a binary
search tree is made entirely of 2-nodes). We will allow k € {2,3,4}.

Say a 3-node has values x; < x», and children ¢1, ¢ and cs.

Then all descendants of ¢; must have values at most xj...
All descendants of ¢ must have values greater than x; and less than x»...
And all descendants of ¢3 must have values greater than xs.

4-nodes work the same way. So we can still find a value in O(d) time.

John Lapinskas 2-3-4 trees | 4/6

Idea: Force the tree to be perfectly balanced, with all levels full. To make
this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain k — 1 values (so a binary
search tree is made entirely of 2-nodes). We will allow k € {2,3,4}.

Say a 3-node has values x; < x», and children ¢1, ¢ and cs.

Then all descendants of ¢; must have values at most xj...
All descendants of ¢ must have values greater than x; and less than x»...
And all descendants of ¢3 must have values greater than xs.

4-nodes work the same way. So we can still find a value in O(d) time.

John Lapinskas 2-3-4 trees | 4/6

Idea: Force the tree to be perfectly balanced, with all levels full. To make
this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain k — 1 values (so a binary
search tree is made entirely of 2-nodes). We will allow k € {2,3,4}.

Say a 3-node has values x; < x», and children ¢1, ¢ and cs.

Then all descendants of ¢; must have values at most xj...
All descendants of ¢ must have values greater than x; and less than x»...
And all descendants of ¢3 must have values greater than xs.

4-nodes work the same way. So we can still find a value in O(d) time.

John Lapinskas 2-3-4 trees | 4/6

Idea: Force the tree to be perfectly balanced, with all levels full. To make
this possible to maintain, allow nodes to contain more than one value.

A k-node can have up to k children and contain k — 1 values (so a binary
search tree is made entirely of 2-nodes). We will allow k € {2,3,4}.

Find 33; Not found.

Say a 3-node has values x; < x», and children ¢1, ¢ and cs.

Then all descendants of ¢; must have values at most xj...
All descendants of ¢ must have values greater than x; and less than x»...
And all descendants of ¢3 must have values greater than xs.

4-nodes work the same way. So we can still find a value in O(d) time.

John Lapinskas 2-3-4 trees | 4/6

Inserting new values

Insert 22;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 22;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 23;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 24;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 25;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 26;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 26;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 27;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 28;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 29;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 30;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 31;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 32;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 32;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1.

John Lapinskas 2-3-4 trees | 5/6

Inserting new values

Insert 32;

To insert a value k, first we find the leaf that would contain it if it was
there. If it's a 2-node or a 3-node, we can just add the new value.

If it's a 4-node, we first split it, sending one value up to its parent and
keeping the others as 2-nodes.

If its parent is a 4-node as well, we're in trouble... so we split all 4-nodes
we find on the way down. Still only takes O(d) time.

If we have to split the root, d increases by 1. But balance is maintained!
John Lapinskas 2-3-4 trees | 5/6

Summary of a 2-3-4 tree with distinct values (so far)

Finding a value v: Let x be the root. If v € x, return a pointer to x.
Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that
x is a k-node, let x; < --- < xx_1 be the values in x, let x = —o0, and
let x, = 00; then x;_1 < v < x; for some i. Let ¢ be the i'th child of x.
Then repeat the process from the start, taking x = c.

Inserting a value v: First attempt to find v as above, splitting any
4-nodes encountered (including the root). After reaching a leaf L, and
splitting it if it is a 4-node, add v to L.

Deleting a value v: Next time!

John Lapinskas 2-3-4 trees | 6/6

