2-3-4 trees |l: Deletion and alternative forms

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas 2-3-4 trees |l 1/7



Summary of a 2-3-4 tree with distinct values (so far)

Finding a value v: Let x be the root. If v € x, return a pointer to x.
Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that
x is a k-node, let x; < --- < xx_1 be the values in x, let x = —o0, and
let x, = 00; then x;_1 < v < x; for some i. Let ¢ be the i'th child of x.
Then repeat the process from the start, taking x = c.

Inserting a value v: First attempt to find v as above, splitting any
4-nodes encountered (including the root). After reaching a leaf L, and
splitting it if it is a 4-node, add v to L.

John Lapinskas 2-3-4 trees |l 2/7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.

If it's in a 3-node or a 4-node... we just remove it:
Delete 6

o 1) — (oD

If it's in a 2-node v, this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v's left (or right) sibling is not a 2-node, then we can transfer its right-
most (or leftmost) value to v:

John Lapinskas 2-3-4 trees |1 3/7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.

If it's in a 3-node or a 4-node... we just remove it:
Delete 6

o 1) — (oD

If it's in a 2-node v, this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v's left (or right) sibling is not a 2-node, then we can transfer its right-
most (or leftmost) value to v:

Delete 7

© @ ®

John Lapinskas 2-3-4 trees |1 3/7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.

If it's in a 3-node or a 4-node... we just remove it:
Delete 6

o 1) — (oD

If it's in a 2-node v, this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v's left (or right) sibling is a 2-node, and its parent is not a 2-node, then
we can fuse the two siblings together in the opposite of a split:

John Lapinskas 2-3-4 trees |1 3/7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.

If it's in a 3-node or a 4-node... we just remove it:
Delete 6

o 1) — (oD

If it's in a 2-node v, this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v's left (or right) sibling is a 2-node, and its parent is not a 2-node, then
we can fuse the two siblings together in the opposite of a split:

John Lapinskas 2-3-4 trees |1 3/7



Deleting from a leaf: full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;

O @ & @ (@ (13 14 15)(Q7 18 19)

John Lapinskas 2-3-4 trees Il 4/7




Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;

10 12 16

O @ & @ (@ (13 14 15) (17 18)

John Lapinskas 2-3-4 trees Il 4/7




Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 18;

10 12 16

13 14 15

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 17;

Transfer

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 17;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 16;
Transfer

10 12 15,

.

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 16;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 15;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 15;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 14;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 13;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 13;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 12; 2-node encountered

on way to 12: Fuse it.

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 12;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)
If the root is a 2-node,

and its children are 2-nodes,
fuse it with its children.

Delete 11;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)
If the root is a 2-node,

and its children are 2-nodes,
fuse it with its children.

Delete 10;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)
If the root is a 2-node,

and its children are 2-nodes,
fuse it with its children.

Delete 9;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)
If the root is a 2-node,

and its children are 2-nodes,
fuse it with its children.

Delete 8;

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w, we transfer a value from w to v, reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a
value from v’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)
Delete 8: If the root is a 2-node,

and its children are 2-nodes,
fuse it with its children.

John Lapinskas 2-3-4 trees Il 4/7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Delete 7;

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf — leaving
the structure of the tree untouched!

John Lapinskas 2-3-4 trees |1 5/7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf — leaving
the structure of the tree untouched!

John Lapinskas 2-3-4 trees |1 5/7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Delete 7;

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf — leaving
the structure of the tree untouched!

In general, this will be its own delete operation, and might require
fusing/transferring 2-nodes as normal.

John Lapinskas 2-3-4 trees Il 5/7



Summary of 2-3-4 tree operations

@ Find(v):
@ Descend the tree recursively, using the rule that all children between x and y have
values between x and y. If you reach a leaf not containing v, return Not found.

@ Insert(v):

Apply Find(v) until reaching the leaf £ where v would be if it was already in the tree.

@ If £ is a 2-node or a 3-node, add v to 4.

@ Otherwise, split £ into 2-nodes and add v to the appropriate new leaf.

@ To avoid ¢ being a 4-node with a 4-node parent, split 4-nodes on the way down
(including the root).

@ Delete(v):

@ Apply Find(v) to find the vertex £ containing v.

@ If £is not a leaf, find v's predecessor w, overwrite v with w, and Delete(w).

@ Otherwise, if £ is a 3-node or a 4-node, delete v from £.

@ Otherwise, if £'s left or right sibling is a 3-node or 4-node, transfer from it to make
£ a 3-node, then delete v.
Otherwise, fuse £ with its 2-node sibling to make ¢ a 4-node, then delete v.
To avoid ¢ being a 2-node with a 2-node parent, fuse or transfer 2-nodes on the way
down (including the root).

All operations take O(d) time and maintain perfect balance. Perfect balance
implies that in an n-element tree, d € O(log n) (exercise!), so we're done.

John Lapinskas 2-3-4 trees |l 6/7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!

@ Red-black trees are binary search trees where every non-leaf has
exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

@ Every root-leaf path has the same number of black vertices.

@ No red vertex has a red child.

LEOOOOLL O0O0OOOA

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node;

John Lapinskas 2-3-4 trees Il 7/7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!
@ Red-black trees are binary search trees where every non-leaf has

exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

@ Every root-leaf path has the same number of black vertices.

@ No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node; each 4-node by a black node with
two red children;

John Lapinskas 2-3-4 trees Il 7/7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!
@ Red-black trees are binary search trees where every non-leaf has

exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

@ Every root-leaf path has the same number of black vertices.

@ No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node; each 4-node by a black node with

two red children; and each 3-node by a black node with one red child.
John Lapinskas 2-3-4 trees Il 7/7



