
2-3-4 trees II: Deletion and alternative forms
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas 2-3-4 trees II 1 / 7



Summary of a 2-3-4 tree with distinct values (so far)

10

3 7 18 32 40

1 4 5 6 8 9 13 30 35 42 96

Finding a value v : Let x be the root. If v ∈ x , return a pointer to x .
Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that
x is a k-node, let x1 ≤ · · · ≤ xk−1 be the values in x , let x0 = −∞, and
let xk = ∞; then xi−1 < v < xi for some i . Let c be the i ’th child of x .
Then repeat the process from the start, taking x = c .

Inserting a value v : First attempt to find v as above, splitting any
4-nodes encountered (including the root). After reaching a leaf L, and
splitting it if it is a 4-node, add v to L.

John Lapinskas 2-3-4 trees II 2 / 7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we’re trying to delete is a leaf.

If it’s in a 3-node or a 4-node... we just remove it:

Delete 6

4 6 7 4 7

If it’s in a 2-node v , this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v ’s left (or right) sibling is not a 2-node, then we can transfer its right-
most (or leftmost) value to v :

Delete 7

2 3

3

1 5

70 0 2

1 3

5 7

50

1

3 5 73 5

John Lapinskas 2-3-4 trees II 3 / 7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we’re trying to delete is a leaf.

If it’s in a 3-node or a 4-node... we just remove it:

Delete 6

4 6 7 4 7

If it’s in a 2-node v , this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v ’s left (or right) sibling is not a 2-node, then we can transfer its right-
most (or leftmost) value to v :

Delete 7

2 3

3

1 5

70 0 2

1 3

5 7

5

0

1

3 5 73 5

John Lapinskas 2-3-4 trees II 3 / 7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we’re trying to delete is a leaf.

If it’s in a 3-node or a 4-node... we just remove it:

Delete 6

4 6 7 4 7

If it’s in a 2-node v , this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v ’s left (or right) sibling is a 2-node, and its parent is not a 2-node, then
we can fuse the two siblings together in the opposite of a split:

Delete 7

2 3

3

1 5

70

0 2

1 3

5 75

0

1

3 5 7

3 5

John Lapinskas 2-3-4 trees II 3 / 7



Deleting from a leaf: Dealing with 2-nodes

First suppose the value we’re trying to delete is a leaf.

If it’s in a 3-node or a 4-node... we just remove it:

Delete 6

4 6 7 4 7

If it’s in a 2-node v , this would break perfect balance. So like with
insertion, we need to first turn v into a 3-node or a 4-node.

If v ’s left (or right) sibling is a 2-node, and its parent is not a 2-node, then
we can fuse the two siblings together in the opposite of a split:

Delete 7

2 3

3

1 5

70

0 2

1 3

5 75

0

1

3 5 7

3 5

John Lapinskas 2-3-4 trees II 3 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;

Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 15

13 1413

17 18 19

17 181716 171615 161513 14 1513 141311 12 1311 12

10 12 16

151410 1210

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;

Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 15

13 1413 17 18 19

17 18

1716 171615 161513 14 1513 141311 12 1311 12

10 12 16

151410 1210

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;

Delete 18;

Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 15

13 1413 17 18 1917 18

17

16 171615 161513 14 1513 141311 12 1311 12

10 12 16

151410 1210

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;

Delete 17;

Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 15

13 1413 17 18 1917 18

17

16 171615 161513 14 1513 141311 12 1311 12

10 12 16

151410 1210

4 8

Transfer

TransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;

Delete 17;

Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 15

13 14

13 17 18 1917 181716 17

16

15 161513 14 1513 141311 12 1311 12

10 12

16

15

1410 1210

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;

Delete 16;

Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 15

13 14

13 17 18 1917 181716 17

16

15 161513 14 1513 141311 12 1311 12

10 12

16

15

1410 1210

4 8

Transfer

Transfer

FuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;

Delete 16;

Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 1513 14

13

17 18 1917 181716 171615 16

15

13 14 1513 141311 12 1311 12

10 12

1615

14

10 1210

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;

Delete 15;

Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 1513 14

13

17 18 1917 181716 171615 16

15

13 14 1513 141311 12 1311 12

10 12

1615

14

10 1210

4 8

TransferTransfer

Fuse

Fuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;

Delete 15;

Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 1513 1413 17 18 1917 181716 171615 161513 14 15

13 14

1311 12 1311 12

10 12

1615

14

10 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;

Delete 14;

Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 14

13

11 12 1311 12

10 12

1615

14

10 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;

Delete 13;

Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11

13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 14

13

11 12 1311 12

10 12

1615

14

10 12

10

4 8

TransferTransferFuse

Fuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;

Delete 13;

Delete 12;Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;

Delete 12;

Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 1211

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;

Delete 12;

Delete 11;Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 87

9

9 10 119 10911 12

11

2 6 8 10

6 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;

Delete 11;

Delete 10;Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 8799 10 11

9 10

911 1211

2

6 8 10

6 8

6

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;

Delete 10;

Delete 9;Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5 7

7 8 97 8799 10 119 10

9

11 1211

2

6 8 10

6 8

6

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;

Delete 9;

Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5

77 8 9

7 8

799 10 119 10911 1211

2

6 8 106 8

6

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;

Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5

77 8 9

7 8

799 10 119 10911 1211

2

6 8 106 8

6

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v . If v is a 3-node or 4-node, we just delete it.

If v is a 2-node with a 3-node or 4-node sibling w , we transfer a value from w to v , reducing to
the 3-node case.

If v is a 2-node with a 2-node sibling w , and a 3-node or 4-node parent, we fuse v , w and a
value from v ’s parent, reducing to the 4-node case.

Like with insertion, we will make sure we never have a 2-node with a
2-node parent by fusing and transferring 2-nodes as we descend.

(These operations work on non-leaves as well!)

Delete 19;Delete 18;Delete 17;Delete 16;Delete 15;Delete 14;Delete 13;Delete 12;Delete 11;Delete 10;Delete 9;

Delete 8;

1 3

2

5 7

6

9

9

11 13 14 1513 1413 17 18 1917 181716 171615 161513 14 1513 141311 12 13

11 12

10 12

1615

1410 12

10

4 8

TransferTransferFuseFuse

2-node encountered
on way to 12: Fuse it.

1 3 5

77 8 97 8

7

99 10 119 10911 1211

2

6 8 106 86

4

2 4 6

If the root is a 2-node,
and its children are 2-nodes,
fuse it with its children.

FuseFuse

Fuse

John Lapinskas 2-3-4 trees II 4 / 7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let’s reduce the problem to deleting from a leaf!

Delete 7;

1 3 5 6

5

8 10

2 4 9

7

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w , and then delete w from its leaf — leaving
the structure of the tree untouched!

In general, this will be its own delete operation, and might require
fusing/transferring 2-nodes as normal.

John Lapinskas 2-3-4 trees II 5 / 7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let’s reduce the problem to deleting from a leaf!

Delete 7;

1 3 5 6

5

8 10

2 4 9

7

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w , and then delete w from its leaf — leaving
the structure of the tree untouched!

In general, this will be its own delete operation, and might require
fusing/transferring 2-nodes as normal.

John Lapinskas 2-3-4 trees II 5 / 7



Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let’s reduce the problem to deleting from a leaf!

Delete 7;

1 3

5 6

5 8 10

2 4 9

6

Exercise: If v is not stored in a leaf, then the predecessor w of v — the
value just before v in sorted order — will always be in a leaf.

So we can overwrite v with w , and then delete w from its leaf — leaving
the structure of the tree untouched!

In general, this will be its own delete operation, and might require
fusing/transferring 2-nodes as normal.

John Lapinskas 2-3-4 trees II 5 / 7



Summary of 2-3-4 tree operations

Find(v):

Descend the tree recursively, using the rule that all children between x and y have
values between x and y . If you reach a leaf not containing v , return Not found.

Insert(v):

Apply Find(v) until reaching the leaf ℓ where v would be if it was already in the tree.
If ℓ is a 2-node or a 3-node, add v to ℓ.
Otherwise, split ℓ into 2-nodes and add v to the appropriate new leaf.
To avoid ℓ being a 4-node with a 4-node parent, split 4-nodes on the way down
(including the root).

Delete(v):

Apply Find(v) to find the vertex ℓ containing v .
If ℓ is not a leaf, find v ’s predecessor w , overwrite v with w , and Delete(w).
Otherwise, if ℓ is a 3-node or a 4-node, delete v from ℓ.
Otherwise, if ℓ’s left or right sibling is a 3-node or 4-node, transfer from it to make
ℓ a 3-node, then delete v .
Otherwise, fuse ℓ with its 2-node sibling to make ℓ a 4-node, then delete v .
To avoid ℓ being a 2-node with a 2-node parent, fuse or transfer 2-nodes on the way
down (including the root).

All operations take O(d) time and maintain perfect balance. Perfect balance
implies that in an n-element tree, d ∈ O(log n) (exercise!), so we’re done.

John Lapinskas 2-3-4 trees II 6 / 7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!

Red-black trees are binary search trees where every non-leaf has
exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

Every root-leaf path has the same number of black vertices.

No red vertex has a red child.

6

2 4 8 10 12

1 3 5 7 9 11 13

6

2
4

10
8 12

1 3 5 7 9 11 13

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node;

each 4-node by a black node with
two red children; and each 3-node by a black node with one red child.

John Lapinskas 2-3-4 trees II 7 / 7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!

Red-black trees are binary search trees where every non-leaf has
exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

Every root-leaf path has the same number of black vertices.

No red vertex has a red child.

6

2 4 8 10 12

1 3 5 7 9 11 13

6

2
4

10
8 12

1 3 5 7 9 11 13

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node; each 4-node by a black node with
two red children;

and each 3-node by a black node with one red child.

John Lapinskas 2-3-4 trees II 7 / 7



Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they
are slightly faster to implement... But they are secretly the same thing!

Red-black trees are binary search trees where every non-leaf has
exactly 2 children, and vertices are coloured red or black.
Exception: A black node with a single red leaf child is OK.

Every root-leaf path has the same number of black vertices.

No red vertex has a red child.

6

2 4 8 10 12

1 3 5 7 9 11 13

6

2
4

10
8 12

1 3 5 7 9 11 13

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:
replacing each 2-node by a black node; each 4-node by a black node with
two red children; and each 3-node by a black node with one red child.

John Lapinskas 2-3-4 trees II 7 / 7


