2-3-4 trees II: Deletion and alternative forms COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Summary of a 2-3-4 tree with distinct values (so far)

Finding a value \boldsymbol{v} : Let x be the root. If $v \in x$, return a pointer to x. Otherwise, if x is a leaf, return Not Found. Otherwise, let k be such that x is a k-node, let $x_{1} \leq \cdots \leq x_{k-1}$ be the values in x, let $x_{0}=-\infty$, and let $x_{k}=\infty$; then $x_{i-1}<v<x_{i}$ for some i. Let c be the i 'th child of x. Then repeat the process from the start, taking $x=c$.

Inserting a value v: First attempt to find v as above, splitting any 4 -nodes encountered (including the root). After reaching a leaf L, and splitting it if it is a 4-node, add v to L.

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf. If it's in a 3-node or a 4-node...

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf. If it's in a 3 -node or a 4-node... we just remove it:

Delete 6

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is not a 2-node, then we can transfer its rightmost (or leftmost) value to v :

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is not a 2-node, then we can transfer its rightmost (or leftmost) value to v :

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is not a 2-node, then we can transfer its rightmost (or leftmost) value to v :

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is not a 2-node, then we can transfer its rightmost (or leftmost) value to v :

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is not a 2-node, then we can transfer its rightmost (or leftmost) value to v :

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is a 2-node, and its parent is not a 2-node, then we can fuse the two siblings together in the opposite of a split:

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3 -node or a 4-node.

If v 's left (or right) sibling is a 2-node, and its parent is not a 2-node, then we can fuse the two siblings together in the opposite of a split:

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is a 2-node, and its parent is not a 2-node, then we can fuse the two siblings together in the opposite of a split:

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is a 2-node, and its parent is not a 2-node, then we can fuse the two siblings together in the opposite of a split:

Deleting from a leaf: Dealing with 2-nodes

First suppose the value we're trying to delete is a leaf.
If it's in a 3 -node or a 4-node... we just remove it:
Delete 6

If it's in a 2-node v, this would break perfect balance. So like with insertion, we need to first turn v into a 3-node or a 4-node.

If v 's left (or right) sibling is a 2-node, and its parent is not a 2-node, then we can fuse the two siblings together in the opposite of a split:

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4 -node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2-node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2-node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2-node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 12;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2-node with a 2-node sibling w, and a 3-node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 12;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3 -node or 4 -node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 11;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 11;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4-node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 11;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 11;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 10 ;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 10 ;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 9 ;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 9;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 9;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 9;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 8;

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 8;
If the root is a 2-node, and its children are 2-nodes, fuse it with its children.

Deleting from a leaf: The full procedure

Say we are trying to delete a value from a leaf v. If v is a 3-node or 4-node, we just delete it. If v is a 2 -node with a 3 -node or 4 -node sibling w, we transfer a value from w to v, reducing to the 3 -node case.

If v is a 2 -node with a 2 -node sibling w, and a 3 -node or 4-node parent, we fuse v, w and a value from v 's parent, reducing to the 4 -node case.

Like with insertion, we will make sure we never have a 2 -node with a 2-node parent by fusing and transferring 2-nodes as we descend.
(These operations work on non-leaves as well!)
Delete 8;
If the root is a 2-node, and its children are 2-nodes, fuse it with its children.

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

Deleting from a non-leaf

When deleting from a non-leaf, preserving perfect balance is harder.
So let's reduce the problem to deleting from a leaf!

Exercise: If v is not stored in a leaf, then the predecessor w of v - the value just before v in sorted order - will always be in a leaf.

So we can overwrite v with w, and then delete w from its leaf - leaving the structure of the tree untouched!

In general, this will be its own delete operation, and might require fusing/transferring 2-nodes as normal.

Summary of 2-3-4 tree operations

- Find(v):
- Descend the tree recursively, using the rule that all children between x and y have values between x and y. If you reach a leaf not containing v, return Not found.
- Insert(v):
- Apply Find (v) until reaching the leaf ℓ where v would be if it was already in the tree.
- If ℓ is a 2 -node or a 3 -node, add v to ℓ.
- Otherwise, split ℓ into 2-nodes and add v to the appropriate new leaf.
- To avoid ℓ being a 4-node with a 4-node parent, split 4-nodes on the way down (including the root).
- Delete($v)$:
- Apply Find (v) to find the vertex ℓ containing v.
- If ℓ is not a leaf, find v 's predecessor w, overwrite v with w, and $\operatorname{Delete}(w)$.
- Otherwise, if ℓ is a 3-node or a 4-node, delete v from ℓ.
- Otherwise, if ℓ 's left or right sibling is a 3-node or 4-node, transfer from it to make ℓ a 3-node, then delete v.
- Otherwise, fuse ℓ with its 2-node sibling to make ℓ a 4-node, then delete v.
- To avoid ℓ being a 2-node with a 2-node parent, fuse or transfer 2-nodes on the way down (including the root).
All operations take $O(d)$ time and maintain perfect balance. Perfect balance implies that in an n-element tree, $d \in O(\log n)$ (exercise!), so we're done.

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement...

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by:

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2 -node by a black node;

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2 -node by a black node;

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2-node by a black node; each 4-node by a black node with two red children;

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2-node by a black node; each 4-node by a black node with two red children;

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2-node by a black node; each 4-node by a black node with two red children; and each 3-node by a black node with one red child.

Red-black trees

Red-black trees are often used over 2-3-4 trees in practice, because they are slightly faster to implement... But they are secretly the same thing!

- Red-black trees are binary search trees where every non-leaf has exactly 2 children, and vertices are coloured red or black. Exception: A black node with a single red leaf child is OK.
- Every root-leaf path has the same number of black vertices.
- No red vertex has a red child.

We can turn a 2-3-4 tree into a red-black tree (or vice versa) by: replacing each 2-node by a black node; each 4-node by a black node with two red children; and each 3-node by a black node with one red child.

