
Linear programming
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Linear programming 1 / 1



What is Linear Programming?

Linear programming is the single most fundamental technique for solving
optimisation problems. It’s used in:

Agriculture;

Nutrition;

Transport;

Manufacturing;

Power provision;

Approximation algorithms;

Planning entire economies. (VERY BAD IDEA!)

These two videos are a very basic overview of a deep and rich theory.

As an example problem: which Warhammer models should Games
Workshop produce in order to make as much money as possible?

John Lapinskas Linear programming 2 / 1



Example application: Warhammer

Let’s consider a vastly simplified problem with just two models:

The noise marine... and the doomwheel.

John Lapinskas Linear programming 3 / 1



Let N be the number of noise marines Games Workshop produces per day,
and let D be the number of doomwheels. Suppose the numbers are as
follows:

Games Workshop makes a profit of £4 per noise marine and £10 per
doomwheel, so...they wish to maximise 4N + 10D.

Their plastic plant can turn out 5kg of finished parts per day. One
noise marine contains 5g of plastic, and one doomwheel contains
100g, so...they require 5N + 100D ≤ 5000.

Similarly, their metal plant can turn out 4kg of finished parts per day.
One noise marine contains 60g of metal, and one doomwheel contains
10g, so...they require 60N + 10D ≤ 4000.

They believe they can sell up to 100 noise marines and 50 doomwheels
per day, but no more, so...they require N ≤ 100 and D ≤ 50.

Games Workshop cannot produce a negative amount of miniatures,
so...they require N, D ≥ 0.

John Lapinskas Linear programming 4 / 1



More succinctly, the problem is:

4N + 10D → max, subject to

5N + 100D ≤ 5000;

60N + 10D ≤ 4000;

N ≤ 100;

D ≤ 50;

N, D ≥ 0.

We can write this in matrix form:

4N + 10D → max, subject to
5 100
60 10
1 0
0 1

(
N
D

)
≤


5000
4000
100
50

 ;

N, D ≥ 0.

John Lapinskas Linear programming 5 / 1



The formal definition

4N + 10D → max, subject to
5 100
60 10
1 0
0 1

(
N
D

)
≤


5000
4000
100
50

 ;

N, D ≥ 0.

Notation: We say x⃗ ≤ y⃗ iff x⃗i ≤ y⃗i for all i , and similarly for x⃗ ≥ y⃗ .

For example, (2, 0, 1) ≥ (0, 0, 0), but (2, 0, 1) ̸≥ (0, 1, 0).
Despite this, we also have (2, 0, 1) ̸≤ (0, 1, 0); they are incomparable.

Problem statement: We are given a linear objective function
f : Rn → R, an m × n matrix A, and an m-dimensional vector b⃗ ∈ Rm.
The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to Ax⃗ ≤ b⃗
and x⃗ ≥ 0⃗.

John Lapinskas Linear programming 6 / 1



Is there always a solution?

Notation: We say x⃗ ≤ y⃗ iff x⃗i ≤ y⃗i for all i , and similarly for x⃗ ≥ y⃗ .

Problem statement: We are given a linear objective function f : Rn → R, an m × n matrix A,
and an m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗)

subject to Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

We say a x⃗ ∈ Rn is a feasible solution to a linear program if x⃗ ≥ 0⃗ and
Ax⃗ ≤ b⃗, and an optimal solution if f (y⃗) ≤ f (x⃗) for all feasible y ∈ Rn.

Sometimes there is no optimal solution, for two reasons:

1. Sometimes the constraints are so tight they rule out any feasible
solutions at all, e.g. x → max subject to x ≤ −1 and x ≥ 0.

2. Sometimes the constraints are so loose that there are feasible
solutions with f (x⃗) arbitrarily large, e.g. x → max subject to x ≥ 0.
We call these problems unbounded.

But these are the only two things that can go wrong — any bounded
linear program with at least one feasible solution has an optimal solution.

John Lapinskas Linear programming 7 / 1



What about other “linear” problems?

Notation: We say x⃗ ≤ y⃗ iff x⃗i ≤ y⃗i for all i , and similarly for x⃗ ≥ y⃗ .

Problem statement: We are given a linear objective function f : Rn → R, an m × n matrix A,
and an m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗)

subject to Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

This statement seems quite restrictive. What about:

Minimisation problems?

= or ≥ constraints?

Allowing the variables to be negative?

All of these can be implemented in the above framework, which is known
as standard form.

John Lapinskas Linear programming 8 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

4x − 5y + z → min subject to

x + y + z = 5;

x + 2y ≥ 2;

x , z ≥ 0.

John Lapinskas Linear programming 9 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

−4x + 5y − z → max subject to

x + y + z = 5;

x + 2y ≥ 2;

x , z ≥ 0.

Minimisation problems: f (x⃗) is as small as possible if and only if −f (x⃗)
is as large as possible.

So 4x − 5y + z → min is equivalent to −4x + 5y − z → max.

John Lapinskas Linear programming 9 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

−4x + 5y − z → max subject to

x + y + z ≤ 5;

x + y + z ≥ 5;

x + 2y ≥ 2;

x , z ≥ 0.

= constraints:
∑

j aijxj = bi if and only if
∑

j aijxj ≥ bi and
∑

i aixi ≤ bi .

So x + y + z = 5 is equivalent to x + y + z ≤ 5 and x + y + z ≥ 5.

John Lapinskas Linear programming 9 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

−4x + 5y − z → max subject to

x + y + z ≤ 5;

−x − y − z ≤ −5;

−x − 2y ≤ −2;

x , z ≥ 0.

≥ constraints:
∑

j aijxj ≥ bi if and only if −
∑

j aijxj ≤ −bi .

So x + 2y ≥ 2 is equivalent to −x − 2y ≤ −2, and x + y + z ≥ 5 is
equivalent to −x − y − z ≤ −5.

John Lapinskas Linear programming 9 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

−4x + 5(y1 − y2)− z → max subject to

x + (y1 − y2)+ z ≤ 5;

−x − (y1 − y2)− z ≤ −5;

−x − 2(y1 − y2) ≤ −2;

x , y1, y2, z ≥ 0.

Removing non-negativity: If y doesn’t have to be non-negative, we can
replace it by y1 − y2 where y1, y2 ≥ 0. We think of y1 as the positive part
and y2 as the negative part.

There will be feasible solutions with both y1 > 0 and y2 > 0, but this doesn’t
matter — any optimal solution of the old problem will be an optimal solution
of the new one and vice versa.

John Lapinskas Linear programming 9 / 1



Standard form: We are given a linear objective function f : Rn → R, an m× n matrix A, and an
m-dimensional vector b⃗ ∈ Rm. The desired output is a vector x⃗ ∈ Rn maximising f (x⃗) subject to

Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗.

As an example, let’s turn the following LP into standard form:

−4x + 5y1 − 5y2 − z → max subject to 1 1 −1 1
−1 −1 1 −1
−1 −2 2 0




x
y1
y2
z

 ≤

 5
−5
−2

 ;

x , y1, y2, x ≥ 0.

The problem is now in standard form! And these techniques are fully general.

So we have reduced the problem of solving a general linear program, which
might have a minimisation goal, = or ≤ constraints, and/or negative vari-
ables, to that of solving a linear program in standard form.

That makes it easier to find an algorithm!

John Lapinskas Linear programming 9 / 1


