Linear programming COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Linear programming is the single most fundamental technique for solving optimisation problems. It's used in:

- Agriculture;
- Nutrition;
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;
- Planning entire economies. (VERY BAD IDEA!)

These two videos are a very basic overview of a deep and rich theory.

As an example problem: which Warhammer models should Games Workshop produce in order to make as much money as possible?

Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

The noise marine...

and the doomwheel.

Let N be the number of noise marines Games Workshop produces per day, and let D be the number of doomwheels. Suppose the numbers are as follows:

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...they require $N \le 100$ and $D \le 50$.
- Games Workshop cannot produce a negative amount of miniatures, so...they require $N, D \ge 0$.

More succinctly, the problem is:

$$4N + 10D \rightarrow \max$$
, subject to
 $5N + 100D \le 5000$;
 $60N + 10D \le 4000$;
 $N \le 100$;
 $D \le 50$;
 $N, D \ge 0$.

We can write this in matrix form:

 $\begin{array}{ccc}
4N + 10D \to \max, \text{ subject to} \\
\begin{pmatrix}
5 & 100 \\
60 & 10 \\
1 & 0 \\
0 & 1
\end{array}
\begin{pmatrix}
N \\
D
\end{pmatrix} \le \begin{pmatrix}
5000 \\
4000 \\
100 \\
50
\end{array}; \\
N, D \ge 0.
\end{array}$

The formal definition

 $\begin{array}{ccc} 4N + 10D \to \max, \text{ subject to} \\ \begin{pmatrix} 5 & 100 \\ 60 & 10 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \binom{N}{D} \leq \binom{5000}{4000} \\ 100 \\ 50 \end{pmatrix}; \\ N, D \geq 0. \end{array}$

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for **all** *i*, and similarly for $\vec{x} \geq \vec{y}$. For example, $(2, 0, 1) \geq (0, 0, 0)$, but $(2, 0, 1) \not\geq (0, 1, 0)$. Despite this, we **also** have $(2, 0, 1) \not\leq (0, 1, 0)$; they are incomparable. **Problem statement:** We are given a linear **objective function** $f : \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$.

The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x}_i \leq \vec{y}_i$ for all *i*, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f : \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an *m*-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

We say a $\vec{x} \in \mathbb{R}^n$ is a feasible solution to a linear program if $\vec{x} \ge \vec{0}$ and $A\vec{x} \le \vec{b}$, and an **optimal** solution if $f(\vec{y}) \le f(\vec{x})$ for all feasible $y \in \mathbb{R}^n$.

Sometimes there is **no** optimal solution, for two reasons:

- Sometimes the constraints are so tight they rule out any feasible solutions at all, e.g. $x \to \max$ subject to $x \le -1$ and $x \ge 0$.
- Sometimes the constraints are so loose that there are feasible solutions with f(x) arbitrarily large, e.g. x → max subject to x ≥ 0. We call these problems unbounded.

But these are the only two things that can go wrong — any bounded linear program with at least one feasible solution has an optimal solution.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all *i*, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an *m*-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

This statement seems quite restrictive. What about:

- Minimisation problems?
- = or \geq constraints?
- Allowing the variables to be negative?

All of these can be implemented in the above framework, which is known as **standard form**.

As an example, let's turn the following LP into standard form:

$$4x - 5y + z \rightarrow \text{min subject to}$$

$$x + y + z = 5;$$

$$x + 2y \ge 2;$$

$$x, z \ge 0.$$

As an example, let's turn the following LP into standard form:

 $-4x + 5y - z \rightarrow \max \text{ subject to}$ x + y + z = 5; $x + 2y \ge 2;$ $x, z \ge 0.$

Minimisation problems: $f(\vec{x})$ is as small as possible if and only if $-f(\vec{x})$ is as large as possible.

So $4x - 5y + z \rightarrow \min$ is equivalent to $-4x + 5y - z \rightarrow \max$.

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max subject to}$$

$$x + y + z \leq 5;$$

$$x + y + z \geq 5;$$

$$x + 2y \geq 2;$$

$$x, z \geq 0.$$

= constraints: $\sum_{j} a_{ij}x_j = b_i$ if and only if $\sum_{j} a_{ij}x_j \ge b_i$ and $\sum_{i} a_ix_i \le b_i$. So x + y + z = 5 is equivalent to $x + y + z \le 5$ and $x + y + z \ge 5$.

As an example, let's turn the following LP into standard form:

 $-4x + 5y - z \rightarrow \max \text{ subject to}$ $x + y + z \le 5;$ $-x - y - z \le -5;$ $-x - 2y \le -2;$ $x, z \ge 0.$

 \geq constraints: $\sum_{j} a_{ij}x_j \geq b_i$ if and only if $-\sum_{j} a_{ij}x_j \leq -b_i$. So $x + 2y \geq 2$ is equivalent to $-x - 2y \leq -2$, and $x + y + z \geq 5$ is equivalent to $-x - y - z \leq -5$.

As an example, let's turn the following LP into standard form:

 $-4x + 5(y_1 - y_2) - z \rightarrow \text{max subject to}$ $x + (y_1 - y_2) + z \le 5;$ $-x - (y_1 - y_2) - z \le -5;$ $-x - 2(y_1 - y_2) \le -2;$ $x, y_1, y_2, z \ge 0.$

Removing non-negativity: If y doesn't have to be non-negative, we can replace it by $y_1 - y_2$ where $y_1, y_2 \ge 0$. We think of y_1 as the positive part and y_2 as the negative part.

There will be feasible solutions with both $y_1 > 0$ and $y_2 > 0$, but this doesn't matter — any optimal solution of the old problem will be an optimal solution of the new one and vice versa.

As an example, let's turn the following LP into standard form:

$$-4x + 5y_1 - 5y_2 - z \to \max \text{ subject to}$$
$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ -1 & -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y_1 \\ y_2 \\ z \end{pmatrix} \le \begin{pmatrix} 5 \\ -5 \\ -2 \end{pmatrix};$$
$$x, y_1, y_2, x \ge 0.$$

The problem is now in standard form! And these techniques are fully general.

So we have **reduced** the problem of solving a general linear program, which might have a minimisation goal, = or \leq constraints, and/or negative variables, to that of solving a linear program in standard form.

That makes it easier to find an algorithm!