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What is Linear Programming?

Linear programming is the single most fundamental technique for solving
optimisation problems. It's used in:

Agriculture;
Nutrition;

Transport;

°
°

@ Manufacturing;
@ Power provision;
°

Approximation algorithms;

Planning entire economies. (VERY BAD IDEA!)

These two videos are a very basic overview of a deep and rich theory.

As an example problem: which Warhammer models should Games
Workshop produce in order to make as much money as possible?
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Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

e
WARHAMMER COMMUNITY

5
5

The noise marine... and the doomwheel.
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Let N be the number of noise marines Games Workshop produces per day,
and let D be the number of doomwheels. Suppose the numbers are as
follows:

Games Workshop makes a profit of £4 per noise marine and £10 per
doomwheel, so...they wish to maximise 4N + 10D.

Their plastic plant can turn out 5kg of finished parts per day. One
noise marine contains 5g of plastic, and one doomwheel contains
100g, so...they require 5/ 4 100D < 5000.

Similarly, their metal plant can turn out 4kg of finished parts per day.
One noise marine contains 60g of metal, and one doomwheel contains
10g, so...they require 60/ + 10D < 4000.

They believe they can sell up to 100 noise marines and 50 doomwheels
per day, but no more, so...they require N < 100 and D < 50.

Games Workshop cannot produce a negative amount of miniatures,
so...they require N, D > 0.
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More succinctly, the problem is:

4N + 10D — max, subject to
5N + 100D < 5000;
60N 4 10D < 4000;
N < 100;
D < 50;
N, D > 0.

We can write this in matrix form:

4N 4 10D — max, subject to

5 100 5000

60 10 | (N _ [4000 |

1 0 |\p)=1 100 |’

0 1 50
N, D > 0.
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The formal definition

4N + 10D — max, subject to

5 100 5000

60 10 | /N 4000

1 0 D)= 100

0 1 50
N, D> 0.

Notation: We say x < y iff x; < y; for all i, and similarly for X > y.
For example, (2,0,1) > (0,0,0), but (2,0,1) % (0,1,0).

Despite this, we also have (2,0,1) £ (0, 1,0); they are incomparable.
Problem statement: We are given a linear objective function

f: R" — R, an m x n matrix A, and an m-dimensional vector b € R™.

The desired output is a vector X € R"” maximising f(X) subject to AX < b
and X > 0.
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Is there always a solution?

Notation: We say X < y iff X; < y; for all i, and similarly for X > y.

Problem statement: We are given a linear objective function f: R” — R, an m X n matrix A,
and an m-dimensional vector b € R™. The desired output is a vector X € R" maximising f(X)

subject to AX < b and % > 0.

We say a X € R" is a feasible solution to a linear program if ¥ > 0 and
AX < b, and an optimal solution if f(y) < f(X) for all feasible y € R".
Sometimes there is no optimal solution, for two reasons:

@ Sometimes the constraints are so tight they rule out any feasible
solutions at all, e.g. x — max subject to x < —1 and x > 0.

@ Sometimes the constraints are so loose that there are feasible
solutions with f(x) arbitrarily large, e.g. x — max subject to x > 0.
We call these problems unbounded.

But these are the only two things that can go wrong — any bounded
linear program with at least one feasible solution has an optimal solution.
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What about other “linear” proble

Notation: We say X < y iff X; < y; for all i, and similarly for X > y.

Problem statement: We are g_iven a linear objective function f: R” — R, an m X n matrix A,
and an m-dimensional vector b € R™. The desired output is a vector X € R" maximising f(X)
subject to AX < b and X > 0.

This statement seems quite restrictive. What about:

@ Minimisation problems?

@ = or > constraints?

@ Allowing the variables to be negative?
All of these can be implemented in the above framework, which is known
as standard form.
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Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to
AZX < band X >0.

As an example, let’s turn the following LP into standard form:
4x — by 4+ z — min subject to
X+y+z=25;
xX+2y > 2;
x, z > 0.
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Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to
AZX < band X >0.

As an example, let’s turn the following LP into standard form:
—4x + by — z — max subject to
xX+y+z=25;
xX4+2y > 2;
x, z > 0.

Minimisation problems: f(X) is as small as possible if and only if —f(X)
is as large as possible.

So 4x — 5y + z — min is equivalent to —4x + 5y — z — max.

John Lapinskas Linear programming 9/1



Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to
AZX < band X >0.

As an example, let’s turn the following LP into standard form:

—4x 4+ 5y — z — max subject to
x+y+z<5;
x+y+z2>5;

xX+4+2y > 2;
x, z>0.

= constraints: Zj ajx; = b; if and only if Zj ajxj > bjand ) aix; < b;.

Sox+y+z=>5isequivalenttox+y+z<5and x+y+ z > 5.
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Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to
AZX < band X >0.

As an example, let’s turn the following LP into standard form:
—4x 4 5y — z — max subject to
x+y+z<5;
—x—y—z< =5b;
—x—2y< =2
x, z > 0.

A

> constraints: Zj ajjxj > b; if and only if — Zj ajxj < —bj.

So x +2y > 2 is equivalent to —x — 2y < -2, and x+y+z >5is
equivalent to —x —y — z < —5.
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Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to

A% < b and ¥ > 0.

As an example, let’s turn the following LP into standard form:
—4x 4+ 5(y1 — y2) — z — max subject to
x+(n—y)+z<5
—x—(y1 —y2) —z < -5
—x—=2(y1 —y2) £ -2
X, Y1, ¥2, 2 2 0.

Removing non-negativity: If y doesn't have to be non-negative, we can
replace it by y1 — y» where y1, y» > 0. We think of y; as the positive part
and y» as the negative part.

There will be feasible solutions with both y; > 0 and y» > 0, but this doesn’t
matter — any optimal solution of the old problem will be an optimal solution
of the new one and vice versa.
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Standard form: We are given a linear objective function f: R” — R, an m X n matrix A, and an
m-dimensional vector b € R™. The desired output is a vector X € R"” maximising f(X) subject to
AX < band X > 0.

As an example, let’s turn the following LP into standard form:

—4x 4 5y1 — by, — z — max subject to

1 1 -1 1 X 5
1 -1 1 1] <|-5]:
-1 -2 2 0 y; -2

Xy Y1, Y2, X 2 0.
The problem is now in standard form! And these techniques are fully general.

So we have reduced the problem of solving a general linear program, which
might have a minimisation goal, = or < constraints, and/or negative vari-
ables, to that of solving a linear program in standard form.

That makes it easier to find an algorithm!
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