Linear programming COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

What is Linear Programming?

Linear programming is the single most fundamental technique for solving optimisation problems. It's used in:

- Agriculture;
- Nutrition;
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;
- Planning entire economies. (VERY bAD IDEA!)

These two videos are a very basic overview of a deep and rich theory.
As an example problem: which Warhammer models should Games Workshop produce in order to make as much money as possible?

Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

The noise marine...

and the doomwheel.

Let N be the number of noise marines Games Workshop produces per day, and let D be the number of doomwheels. Suppose the numbers are as follows:

- Games Workshop makes a profit of $£ 4$ per noise marine and $£ 10$ per doomwheel, so...they wish to maximise $4 N+10 D$.
- Their plastic plant can turn out 5 kg of finished parts per day. One noise marine contains 5 g of plastic, and one doomwheel contains 100 g , so...they require $5 \mathrm{~N}+100 D \leq 5000$.
- Similarly, their metal plant can turn out 4 kg of finished parts per day. One noise marine contains 60 g of metal, and one doomwheel contains 10 g , so...they require $60 \mathrm{~N}+10 \mathrm{D} \leq 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...they require $N \leq 100$ and $D \leq 50$.
- Games Workshop cannot produce a negative amount of miniatures, so...they require $N, D \geq 0$.

More succinctly, the problem is:

$$
\begin{aligned}
4 N+10 D & \rightarrow \max , \text { subject to } \\
5 N+100 D & \leq 5000 \\
60 N+10 D & \leq 4000 \\
N & \leq 100 \\
D & \leq 50 \\
N, D & \geq 0
\end{aligned}
$$

We can write this in matrix form:

$$
\begin{aligned}
4 N+10 D & \rightarrow \text { max, subject to } \\
\left(\begin{array}{cc}
5 & 100 \\
60 & 10 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{N}{D} & \leq\left(\begin{array}{c}
5000 \\
4000 \\
100 \\
50
\end{array}\right) ; \\
N, D & \geq 0
\end{aligned}
$$

The formal definition

$$
\begin{aligned}
4 N+10 D & \rightarrow \text { max, subject to } \\
\left(\begin{array}{cc}
5 & 100 \\
60 & 10 \\
1 & 0 \\
0 & 1
\end{array}\right)\binom{N}{D} & \leq\left(\begin{array}{c}
5000 \\
4000 \\
100 \\
50
\end{array}\right) \\
N, D & \geq 0
\end{aligned}
$$

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x}_{i} \leq \vec{y}_{i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$. For example, $(2,0,1) \geq(0,0,0)$, but $(2,0,1) \nsupseteq(0,1,0)$. Despite this, we also have $(2,0,1) \not \leq(0,1,0)$; they are incomparable.
Problem statement: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

Is there always a solution?

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x}_{i} \leq \overrightarrow{y_{i}}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.
Problem statement: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

We say a $\vec{x} \in \mathbb{R}^{n}$ is a feasible solution to a linear program if $\vec{x} \geq \overrightarrow{0}$ and $A \vec{x} \leq \vec{b}$, and an optimal solution if $f(\vec{y}) \leq f(\vec{x})$ for all feasible $y \in \mathbb{R}^{n}$.

Sometimes there is no optimal solution, for two reasons:
(1) Sometimes the constraints are so tight they rule out any feasible solutions at all, e.g. $x \rightarrow$ max subject to $x \leq-1$ and $x \geq 0$.
(2) Sometimes the constraints are so loose that there are feasible solutions with $f(\vec{x})$ arbitrarily large, e.g. $x \rightarrow$ max subject to $x \geq 0$. We call these problems unbounded.

But these are the only two things that can go wrong - any bounded linear program with at least one feasible solution has an optimal solution.

What about other "linear" problems?

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x}_{i} \leq \vec{y}_{i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.
Problem statement: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

This statement seems quite restrictive. What about:

- Minimisation problems?
- $=$ or \geq constraints?
- Allowing the variables to be negative?

All of these can be implemented in the above framework, which is known as standard form.

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
4 x-5 y+z & \rightarrow \text { min subject to } \\
x+y+z & =5 \\
x+2 y & \geq 2 \\
x, z & \geq 0
\end{aligned}
$$

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
-4 x+5 y-z & \rightarrow \text { max subject to } \\
x+y+z & =5 \\
x+2 y & \geq 2 \\
x, z & \geq 0
\end{aligned}
$$

Minimisation problems: $f(\vec{x})$ is as small as possible if and only if $-f(\vec{x})$ is as large as possible.

So $4 x-5 y+z \rightarrow \min$ is equivalent to $-4 x+5 y-z \rightarrow \max$.

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
-4 x+5 y-z & \rightarrow \max \text { subject to } \\
x+y+z & \leq 5 \\
x+y+z & \geq 5 \\
x+2 y & \geq 2 \\
x, z & \geq 0
\end{aligned}
$$

$=$ constraints: $\sum_{j} a_{i j} x_{j}=b_{i}$ if and only if $\sum_{j} a_{i j} x_{j} \geq b_{i}$ and $\sum_{i} a_{i} x_{i} \leq b_{i}$.
So $x+y+z=5$ is equivalent to $x+y+z \leq 5$ and $x+y+z \geq 5$.

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
-4 x+5 y-z & \rightarrow \max \text { subject to } \\
x+y+z & \leq 5 \\
-x-y-z & \leq-5 \\
-x-2 y & \leq-2 \\
x, z & \geq 0
\end{aligned}
$$

\geq constraints: $\sum_{j} a_{i j} x_{j} \geq b_{i}$ if and only if $-\sum_{j} a_{i j} x_{j} \leq-b_{i}$.
So $x+2 y \geq 2$ is equivalent to $-x-2 y \leq-2$, and $x+y+z \geq 5$ is equivalent to $-x-y-z \leq-5$.

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
-4 x+5\left(y_{1}-y_{2}\right)-z & \rightarrow \max \text { subject to } \\
x+\left(y_{1}-y_{2}\right)+z & \leq 5 ; \\
-x-\left(y_{1}-y_{2}\right)-z & \leq-5 ; \\
-x-2\left(y_{1}-y_{2}\right) & \leq-2 ; \\
x, y_{1}, y_{2}, z & \geq 0 .
\end{aligned}
$$

Removing non-negativity: If y doesn't have to be non-negative, we can replace it by $y_{1}-y_{2}$ where $y_{1}, y_{2} \geq 0$. We think of y_{1} as the positive part and y_{2} as the negative part.

There will be feasible solutions with both $y_{1}>0$ and $y_{2}>0$, but this doesn't matter - any optimal solution of the old problem will be an optimal solution of the new one and vice versa.

Standard form: We are given a linear objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^{m}$. The desired output is a vector $\vec{x} \in \mathbb{R}^{n}$ maximising $f(\vec{x})$ subject to $A \vec{x} \leq \vec{b}$ and $\vec{x} \geq \overrightarrow{0}$.

As an example, let's turn the following LP into standard form:

$$
\begin{aligned}
&-4 x+5 y_{1}-5 y_{2}-z \rightarrow \max \text { subject to } \\
&\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
-1 & -1 & 1 & -1 \\
-1 & -2 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y_{1} \\
y_{2} \\
z
\end{array}\right) \leq\left(\begin{array}{c}
5 \\
-5 \\
-2
\end{array}\right) ; \\
& x, y_{1}, y_{2}, x \geq 0 .
\end{aligned}
$$

The problem is now in standard form! And these techniques are fully general.
So we have reduced the problem of solving a general linear program, which might have a minimisation goal, $=$ or \leq constraints, and/or negative variables, to that of solving a linear program in standard form.

That makes it easier to find an algorithm!

