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How to solve linear programs?

We can look at linear programs geometrically. The n-variable constraints
describe a feasible polytope in Rn. For example, if n = 2:

x + y → max subject to

x

y

y ≤ −x/2 + 2
y ≤ −0.8x + 2.2

y ≤ −3x + 5x ≤ 1.5

x + y = 1x + y = 2

x + y = 27/11

Optimal solution!

Let f be the objective function. Then for all c, {x⃗ ∈ Rn : f (x⃗) = c} is an
(n − 1)-dimensional hyperplane in Rn. The problem reduces to: how large
can we take c and still have this hyperplane intersect the feasible polytope?

“Corollary”: There will always be an optimal solution at a corner!
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The simplex algorithm

The n-variable constraints of an LP describe a feasible polytope in Rn.

If the linear program has an optimal solution, i.e. if it is bounded and the feasible polytope is
non-empty, then it will have one at a vertex (i.e. corner) of the polytope.

The simplex algorithm can be described in great and tedious detail, but
the point is: search greedily for a vertex of the feasible polytope which
maximises the objective function.

So starting at an arbitrary vertex, look at all the neighbouring vertices and
move to whichever one makes the objective function biggest.

If none of them do, return the current vertex.

Problem: There are often Ω(2n) vertices, e.g. with a hypercube!
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Running time of the simplex algorithm

If the linear program has an optimal solution, i.e. if it is bounded and the feasible polytope is
non-empty, then it will have one at a vertex (i.e. corner) of the polytope.

The simplex algorithm works by searching through the vertices greedily.

Intuitively, it feels like there should always be a short path from any vertex
to an optimal solution... but the simplex algorithm need not find it. Klee
and Minty (1973) gave a “twisted hypercube” on which the simplex
algorithm needed to visit every single vertex.

So why bother with it if it might take exponentially long?

Because in practice it normally only needs Θ(n) steps! Explaining why this
is true is a major open problem in theoretical computer science.

There are also interior point algorithms, which have a polynomial
worst-case run-time, but which generally work less well in practice.
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How not to do it...

Linear programming was first proposed by Leonid
Kantorovich to solve the problem of most
effectively producing as much plywood as possible
in a specific trust.

This later became the basis of the entire Soviet
planned economy, for which he received the Stalin
Award in 1949.

The Soviet planned economy didn’t do so well! So
what went wrong?

Lack of computational power led to awful
simplifying assumptions.

They had no accurate data.

What should the objective function be?
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A less lethal application: Approximation algorithms

A vertex cover in a graph G = (V ,E ) is a set X ⊆ V such that every
edge in E has at least one vertex in X .

A valid vertex cover. Not a valid vertex cover.

We would like to find the smallest possible vertex cover of G .
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A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

We can express finding a minimum vertex cover as solving a linear program
in which the solutions must be integers: an integer linear program.

Given a graph G = (V ,E ), we assign a variable xv ∈ {0, 1} to each vertex
v . We interpret xv = 1 as “v is in the cover”, and xv = 0 as “v is not in
the cover”. We can then formulate the problem as:∑

ixi → min subject to Minimise |X | subject to
xu + xv ≥ 1 for all {u, v} ∈ E ; u ∈ X or v ∈ X (or both)

for all {u, v} ∈ E

xv ≤ 1 for all v ∈ V ;

xv ≥ 0 for all v ∈ V ; [Ensures xv ∈ {0, 1} for all v ]

xv ∈ N for all v ∈ V .

Optimal solutions of this ILP correspond to minimum vertex covers of G ,
and minimum vertex covers of G correspond to optimal solutions.
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An example of the ILP formulation of vertex cover

1

2

3

4 5

6

7

8

X = {1, 3, 5, 7} is not a vertex cover.

∑
vxv → min subject to

xu + xv ≥ 1 for all {u, v} ∈ E ;

xv ≤ 1 for all v ∈ V ;

xv ≥ 0 for all v ∈ V ;

xv ∈ N for all v ∈ V .

Here we have x1 = x3 = x5 = x7 = 1 and x0 = x2 = x4 = x6 = 0.

The uncovered edge {2, 4} corresponds to the constraint x2 + x4 ≥ 1,
which is violated.
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So now we just solve the ILP, right?

No. As we’ll see later, it’s generally impossible to solve ILPs efficiently.
It’s also impossible to find a minimum vertex cover efficiently. :-(

But we can solve LPs. So what if we relax our ILP by allowing non-integer
solutions, turning it into an LP, and solve that?∑

ixi → min subject to

xu + xv ≥ 1 for all {u, v} ∈ E ;

xv ≤ 1 for all v ∈ V ;

xv ≥ 0 for all v ∈ V .

Then we take our vertex cover X to be {v ∈ V : xv ≥ 1/2}, essentially
rounding up to recover a feasible solution for the ILP.

It’s not hard to show (see problem sheet) that if a minimum vertex cover
has size k , then X is indeed a vertex cover and k ≤ |X | ≤ 2k. So even
though the problem is hard, we can still find an approximate solution!
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