Flow networks COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph.

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

- Airline scheduling;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

- Airline scheduling;
- Image segmentation;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;
- Survey design;

In these two lectures, we'll talk about "flow networks", where something is travelling from place to place inside a graph. Examples include:

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;
- Survey design;
- Professional baseball. (See KT 7.12!)

For now, let's just consider a toy problem. One pump supplies water for one factory, passing through a network of pipes of different capacities.

The problem: How much water can get to the factory?
(The reason we're considering such a basic problem is that it will turn out most of the more interesting problems reduce to this one...!)

For now, let's just consider a toy problem. One pump supplies water for one factory, passing through a network of pipes of different capacities.

The problem: How much water can get to the factory?
(The reason we're considering such a basic problem is that it will turn out most of the more interesting problems reduce to this one...!)

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.
A flow in (G, c, s, t) is a function $f: E \rightarrow \mathbb{R}$ with the following properties:

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.
A flow in (G, c, s, t) is a function $f: E \rightarrow \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E, 0 \leq f(e) \leq c(e)$.

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.
A flow in (G, c, s, t) is a function $f: E \rightarrow \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E, 0 \leq f(e) \leq c(e)$.
- Flow is conserved at vertices; for all $v \in V \backslash\{s, t\}$,

$$
\sum_{u \in N^{-}(v)} f(u, v)=\sum_{w \in N^{+}(v)} f(v, w)
$$

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.
A flow in (G, c, s, t) is a function $f: E \rightarrow \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E, 0 \leq f(e) \leq c(e)$.
- Flow is conserved at vertices; for all $v \in V \backslash\{s, t\}$,

$$
\sum_{u \in N^{-}(v)} f(u, v)=\sum_{w \in N^{+}(v)} f(v, w)
$$

For brevity, we write $f^{-}(v)=\sum_{u \in N^{-}(v)} f(u, v)$ for the total flow into v, and $f^{+}(v)=\sum_{w \in N^{+}(v)} f(v, w)$ for the total flow out of v.

More generally: A flow network (G, c, s, t) consists of a directed graph $G=(V, E)$, a capacity function $c: E \rightarrow \mathbb{N}$, a source vertex $s \in V$ with $N^{-}(s)=\emptyset$, and a sink vertex $t \in V$ with $N^{+}(t)=\emptyset$.
A flow in (G, c, s, t) is a function $f: E \rightarrow \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E, 0 \leq f(e) \leq c(e)$.
- Flow is conserved at vertices; for all $v \in V \backslash\{s, t\}$,

$$
\sum_{u \in N^{-}(v)} f(u, v)=\sum_{w \in N^{+}(v)} f(v, w)
$$

For brevity, we write $f^{-}(v)=\sum_{u \in N^{-}(v)} f(u, v)$ for the total flow into v, and $f^{+}(v)=\sum_{w \in N^{+}(v)} f(v, w)$ for the total flow out of v.
The value of f, denoted $v(f)$, is $f^{+}(s)$.
The problem: Find a maximum flow: a flow f maximising $v(f)$.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

We write $f^{+}(X):=\sum_{e \text { out of } X} f(e)$ and $f^{-}(X):=\sum_{e \text { into } X} f(e)$.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

Why do we define the value of f by $v(f)=f^{+}(s)$ rather than e.g. $f^{-}(t)$?
Because we get the same answer either way! Let's make that formal.

We write $f^{+}(X):=\sum_{e \text { out of } X} f(e)$ and $f^{-}(X):=\sum_{e \text { into } X} f(e)$.
For example, here $f^{+}(X)=5+7=12$ and $f^{-}(X)=1$.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The value of f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}:$

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The value of f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$. (So flow is conserved in sets as well as at individual vertices.)

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}:$

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The value of f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$. (So flow is conserved in sets as well as at individual vertices.)

Proof: By summing conservation of flow over all $v \in X$:

$$
\sum_{v \in X} \sum_{u \in N^{-}(v)} f(u, v)=\sum_{v \in X} \sum_{w \in N^{+}(v)} f(v, w)
$$

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}:$

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The value of f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$. (So flow is conserved in sets as well as at individual vertices.)

Proof: By summing conservation of flow over all $v \in X$:

$$
\sum_{v \in X} \sum_{u \in N^{-}(v)} f(u, v)=\sum_{v \in X} \sum_{w \in N^{+}(v)} f(v, w)
$$

For all $e \subseteq X, f(e)$ appears once on each side; after cancelling those terms we're left with $f^{+}(X)=f^{-}(X)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.
Proof: By Lemma 1, we have $f^{+}(A \backslash\{s\})=f^{-}(A \backslash\{s\})$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.
Proof: By Lemma 1, we have $f^{+}(A \backslash\{s\})=f^{-}(A \backslash\{s\})$.
But $f^{+}(A \backslash\{s\})=f^{+}(A)-f(s, B)$ and $f^{-}(A \backslash\{s\})=f^{-}(A)+f(s, A) \ldots$

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.
Proof: By Lemma 1, we have $f^{+}(A \backslash\{s\})=f^{-}(A \backslash\{s\})$.
But $f^{+}(A \backslash\{s\})=f^{+}(A)-f(s, B)$ and $f^{-}(A \backslash\{s\})=f^{-}(A)+f(s, A) \ldots$ So $f^{+}(A)-f(s, B)=f^{-}(A)+f(s, A)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.
Proof: By Lemma 1, we have $f^{+}(A \backslash\{s\})=f^{-}(A \backslash\{s\})$.
Rearranging $f^{+}(A)-f(s, B)=f^{-}(A)+f(s, A)$:

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$.
Proof: By Lemma 1, we have $f^{+}(A \backslash\{s\})=f^{-}(A \backslash\{s\})$.
Rearranging $f^{+}(A)-f(s, B)=f^{-}(A)+f(s, A)$:
$f^{+}(A)-f^{-}(A)=f(s, B)+f(s, A)=f^{+}(s)=v(f)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any partition (A, B) of V with $s \in A$ and $t \in B$.
Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$. Proof: We have shown $v(f)=f^{+}(A)-f^{-}(A)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any partition (A, B) of V with $s \in A$ and $t \in B$.
Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$. Proof: We have shown $v(f)=f^{+}(A)-f^{-}(A)$.

Since A and B are disjoint and $A \cup B=V$, the edges out of A are the edges into B, so $f^{+}(A)=f^{-}(B)$. Likewise $f^{-}(A)=f^{+}(B)$.

The value of a flow f, denoted $v(f)$, is $f^{+}(s)$.
We write $f^{+}(A):=\sum_{e \text { out of } A} f(e)$ and $f^{-}(A):=\sum_{e \text { into } A} f(e)$.
Lemma 1: For all sets $X \subseteq V \backslash\{s, t\}$, we have $f^{+}(X)=f^{-}(X)$.
A cut is any partition (A, B) of V with $s \in A$ and $t \in B$.
Lemma 2: For all cuts $(A, B), f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)=v(f)$. Proof: We have shown $v(f)=f^{+}(A)-f^{-}(A)$.

Since A and B are disjoint and $A \cup B=V$, the edges out of A are the edges into B, so $f^{+}(A)=f^{-}(B)$. Likewise $f^{-}(A)=f^{+}(B)$.
Lemma 2 implies we could have defined $v(f)$ via any cut in the network. In particular, $f^{+}(s)=f^{-}(t)$.

