# The Ford-Fulkerson algorithm COMS20010 (Algorithms II) 

John Lapinskas, University of Bristol

The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
Now the definition of value is sorted out, how do we solve the problem? How about a greedy approach? Repeatedly find paths from $s$ to $t$ with unused capacity and "push" more flow down them.


The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
Now the definition of value is sorted out, how do we solve the problem? How about a greedy approach? Repeatedly find paths from $s$ to $t$ with unused capacity and "push" more flow down them.


The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
Now the definition of value is sorted out, how do we solve the problem? How about a greedy approach? Repeatedly find paths from $s$ to $t$ with unused capacity and "push" more flow down them.


The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
Now the definition of value is sorted out, how do we solve the problem?
How about a greedy approach? Repeatedly find paths from $s$ to $t$ with unused capacity and "push" more flow down them.


This flow has value $20+10=30$, which is best possible. So a greedy approach can work... but it can also fail.

The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
What if we'd chosen this path first instead?


The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
What if we'd chosen this path first instead?


The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
What if we'd chosen this path first instead?


Now there are no more paths from $s$ to $t$ with spare capacity, but our flow only has value 20...

What if we allow ourselves to push flow backwards along a path?

The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.
What if we'd chosen this path first instead?


Now there are no more paths from $s$ to $t$ with spare capacity, but our flow only has value $20 \ldots$

What if we allow ourselves to push flow backwards along a path? We get a maximum flow! Now to generalise this...

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$ :

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The problem: Find a maximum flow: a flow $f$ maximising $v(f)$.


We want to say: an augmenting path for a flow $f$ is an undirected path from $s$ to $t$ which we can push flow along. So forward edges $e$ have $f(e)<c(e)$, and backward edges $e$ have $f(e)>0$.

But there's an annoying technicality with bidirected edges...


We define the residual graph $G_{f}$ of $(G, c, s, t)$ on $V(G)$ as follows:

- If $(u, v) \in E(G)$ with $f(e)<c(e)$, add $(u, v)$ to $E\left(G_{f}\right)$; call this a forward edge.


We define the residual graph $G_{f}$ of $(G, c, s, t)$ on $V(G)$ as follows:

- If $(u, v) \in E(G)$ with $f(e)<c(e)$, add $(u, v)$ to $E\left(G_{f}\right)$; call this a forward edge.
- If $(u, v) \in E(G)$ with $f(e)>0$, add $(v, u)$ to $E\left(G_{f}\right)$; call this a backward edge. (An edge can be both forward and backward!)


We define the residual graph $G_{f}$ of $(G, c, s, t)$ on $V(G)$ as follows:

- If $(u, v) \in E(G)$ with $f(e)<c(e)$, add $(u, v)$ to $E\left(G_{f}\right)$; call this a forward edge.
- If $(u, v) \in E(G)$ with $f(e)>0$, add $(v, u)$ to $E\left(G_{f}\right)$; call this a backward edge. (An edge can be both forward and backward!)
An augmenting path $P$ is a directed path from $s$ to $t$ in $G_{f}$.


We define the residual graph $G_{f}$ of $(G, c, s, t)$ on $V(G)$ as follows:

- If $(u, v) \in E(G)$ with $f(e)<c(e)$, add $(u, v)$ to $E\left(G_{f}\right)$; call this a forward edge.
- If $(u, v) \in E(G)$ with $f(e)>0$, add $(v, u)$ to $E\left(G_{f}\right)$; call this a backward edge. (An edge can be both forward and backward!)
An augmenting path $P$ is a directed path from $s$ to $t$ in $G_{f}$.
The residual capacity of $(u, v)$ in $G_{f}$ is $\max \{c(u, v)-f(u, v), f(v, u)\}$.
The residual capacity of $P$ is the minimum residual capacity of its edges.
(This is the amount of flow we can push through $P$.)
$(u, v) \in E(G)$ with $f(e)<c(e)$ yields a forward edge $(u, v) \in E\left(G_{f}\right)$.
$(u, v) \in E(G)$ with $f(e)>0$ yields a backward edge $(v, u) \in E\left(G_{f}\right)$.
An augmenting path $P$ is a directed path from $s$ to $t$ in $G_{f}$.
The residual capacity of $(u, v)$ in $G_{f}$ is $\max \{c(u, v)-f(u, v), f(v, u)\}$.
The residual capacity of $P$ is the minimum residual capacity of its edges.


Define Push( $G, c, s, t, f, P)$ as follows:

- Let $C$ be the residual capacity of $P$. (Here $C$ is 10 .)
- For each edge $(u, v)$ of $P$ : if $c(u, v)-f(u, v) \geq C$, then add $C$ to $f(u, v)$; otherwise, we have $f(v, u) \geq C$, so subtract $C$ from $f(v, u)$.
$(u, v) \in E(G)$ with $f(e)<c(e)$ yields a forward edge $(u, v) \in E\left(G_{f}\right)$.
$(u, v) \in E(G)$ with $f(e)>0$ yields a backward edge $(v, u) \in E\left(G_{f}\right)$.
An augmenting path $P$ is a directed path from $s$ to $t$ in $G_{f}$.
The residual capacity of $(u, v)$ in $G_{f}$ is $\max \{c(u, v)-f(u, v), f(v, u)\}$.
The residual capacity of $P$ is the minimum residual capacity of its edges.


Define Push( $G, c, s, t, f, P)$ as follows:

- Let $C$ be the residual capacity of $P$. (Here $C$ is 10 .)
- For each edge $(u, v)$ of $P$ : if $c(u, v)-f(u, v) \geq C$, then add $C$ to $f(u, v)$; otherwise, we have $f(v, u) \geq C$, so subtract $C$ from $f(v, u)$.
Lemma 3: $\operatorname{Push}(G, c, s, t, f, P)$ returns a new flow $f^{\prime}$, with value $v\left(f^{\prime}\right)=v(f)+C$, in $O(|V(G)|)$ time.


## The Ford-Fulkerson Algorithm

Algorithm: FordFULKERSON
Input : A (weakly connected) flow network ( $G, c, s, t$ ).
Output: A flow $f$ with no augmenting paths.
begin
Construct the flow $f$ with $f(e)=0$ for all $e \in E(G)$.
Construct the residual graph $G_{f}$.
while $G_{f}$ contains a path $P$ from s to $t$ do
Find $P$ using depth-first (or breadth-first) search.
Update $f \leftarrow \operatorname{Push}(G, c, s, t, f, P)$.
Update $G_{f}$ on the edges of $P$.
Return $f$.
By Lemma 3, every iteration of $4-7$ increases $v(f)$ by at least 1 . So if $f^{*}$ is a maximum flow, there are at most $v\left(f^{*}\right)$ iterations in total.

Every step takes $O(|E|)$ time or $O(|V|)$ time, and since $G$ is weakly connected we have $|V|=O(|E|)$. So the running time is $O\left(v\left(f^{*}\right)|E|\right)$.

## Worked example



Initialise flow and construct $G_{f}$.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



Push flow along the path. (This path has residual capacity 2.)

## Worked example



Update $G_{f}$ along the path.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



Push flow along the path. (This path has residual capacity 3.)

## Worked example



Update $G_{f}$ along the path.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



Push flow along the path. (This path has residual capacity 2.)

## Worked example



Update $G_{f}$ along the path.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



Push flow along the path. (This path has residual capacity 3.)

## Worked example



Update $G_{f}$ along the path.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



Push flow along the path. (This path has residual capacity 2.)

## Worked example



Update $G_{f}$ along the path.

## Worked example



Apply depth-first search to find an augmenting path in $G_{f}$.

## Worked example



No such path exists, so we're done! This flow has value $5+7=12$.

## Why does this work?

A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in B$. (So $A$ and $B$ partition $V$, the source is in $A$ and the sink is in $B$.)
Lemma 2: For all cuts $(A, B), v(f)=f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)$.


Write $c^{+}(A)=\sum_{e}$ out of $A^{c} c(e)$. By Lemma 2, any flow $g$ has value $v(g)=g^{+}(A)-g^{-}(A) \leq c^{+}(A)=12$, and our output flow has value 12 .
So it must be maximum.
We can use the same argument to prove Ford-Fulkerson always works.

Lemma 2: For all cuts $(A, B), v(f)=f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)$.
To prove the flow $f$ returned by Ford-Fulkerson is always maximum by this argument, we will show there is always a cut $(A, B)$ with $v(f)=c^{+}(A)$, i.e. with $f^{+}(A)=c^{+}(A)$ and $f^{-}(A)=0$.


We take $A=\left\{v \in V(G): v\right.$ reachable from $s$ in $\left.G_{f}\right\}$, and $B=V(G) \backslash A$. $(\boldsymbol{A}, \boldsymbol{B})$ is a cut: $s \in A$, and $t \notin A$ since $f$ has no augmenting paths.

Lemma 2: For all cuts $(A, B), v(f)=f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)$.
To prove the flow $f$ returned by Ford-Fulkerson is always maximum by this argument, we will show there is always a cut $(A, B)$ with $v(f)=c^{+}(A)$, i.e. with $f^{+}(A)=c^{+}(A)$ and $f^{-}(A)=0$.


We take $A=\left\{v \in V(G): v\right.$ reachable from $s$ in $\left.G_{f}\right\}$, and $B=V(G) \backslash A$. $(A, B)$ is a cut:
$\boldsymbol{f}^{+}(\boldsymbol{A})=\boldsymbol{c}^{+}(\boldsymbol{A})$ : No $A \rightarrow B$ forward edges in $G_{f} \Rightarrow$ every $A \rightarrow B$ edge in $G$ is filled to capacity $\Rightarrow f^{+}(A)=c^{+}(A)$.

Lemma 2: For all cuts $(A, B), v(f)=f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)$.
To prove the flow $f$ returned by Ford-Fulkerson is always maximum by this argument, we will show there is always a cut $(A, B)$ with $v(f)=c^{+}(A)$, i.e. with $f^{+}(A)=c^{+}(A)$ and $f^{-}(A)=0$.


We take $A=\left\{v \in V(G): v\right.$ reachable from $s$ in $\left.G_{f}\right\}$, and $B=V(G) \backslash A$.
$(A, B)$ is a cut: $\quad \checkmark \quad f^{+}(A)=c^{+}(A)$ :
$\boldsymbol{f}^{-}(\boldsymbol{A})=\mathbf{0}$ : No $A \rightarrow B$ backward edges in $G_{f} \Rightarrow$ every $B \rightarrow A$ edge in $G$ has zero flow $\Rightarrow f^{-}(A)=0$.

Lemma 2: For all cuts $(A, B), v(f)=f^{+}(A)-f^{-}(A)=f^{-}(B)-f^{+}(B)$.
To prove the flow $f$ returned by Ford-Fulkerson is always maximum by this argument, we will show there is always a cut $(A, B)$ with $v(f)=c^{+}(A)$, i.e. with $f^{+}(A)=c^{+}(A)$ and $f^{-}(A)=0$.


We take $A=\left\{v \in V(G): v\right.$ reachable from $s$ in $\left.G_{f}\right\}$, and $B=V(G) \backslash A$.
$(A, B)$ is a cut: $\quad \checkmark \quad f^{+}(A)=c^{+}(A): \quad \checkmark \quad f^{-}(A)=0$ :
So by Lemma 2, every other flow $g$ has value $g^{+}(A)-g^{-}(A) \leq c^{+}(A)=$ $v(f)$. Thus $f$ is a maximum flow and Ford-Fulkerson is correct.

We have proved three results for the price of one!
Theorem: Ford-Fulkerson always returns a maximum flow.
Theorem: There is always a maximum flow with integer values.
Proof: The maximum flow returned by Ford-Fulkerson has this property. (We can prove this easily with a loop invariant: $f$ starts with value zero, and each iteration of the main loop adds an integer to $f$ 's value.)

Max-flow min-cut theorem: The value of a maximum flow is equal to the minimum capacity of a cut, i.e. the minimum value of $c^{+}(A)$ over all cuts $(A, B)$.

Proof: Let $f$ be a maximum flow, and let $(A, B)$ be a cut minimising $c^{+}(A)$. We already proved $v(f) \leq c^{+}(A)$. Moreover, there is no augmenting path for $f$, so exactly as before, there is a cut $\left(A^{\prime}, B^{\prime}\right)$ with $c^{+}\left(A^{\prime}\right)=v(f)$; thus $v(f) \geq c^{+}(A)$. The result follows.

