
The Ford-Fulkerson algorithm
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas The Ford-Fulkerson algorithm 1 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

Now the definition of value is sorted out, how do we solve the problem?

How about a greedy approach? Repeatedly find paths from s to t with
unused capacity and “push” more flow down them.

0/
20

0/10

0/10 0/
20

0/30s t

This flow has value 20 + 10 = 30, which is best possible.
So a greedy approach can work... but it can also fail.

John Lapinskas The Ford-Fulkerson algorithm 2 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

Now the definition of value is sorted out, how do we solve the problem?

How about a greedy approach? Repeatedly find paths from s to t with
unused capacity and “push” more flow down them.

10
/2
0 10/10

0/10 0/
20

0/30s t

This flow has value 20 + 10 = 30, which is best possible.
So a greedy approach can work... but it can also fail.

John Lapinskas The Ford-Fulkerson algorithm 2 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

Now the definition of value is sorted out, how do we solve the problem?

How about a greedy approach? Repeatedly find paths from s to t with
unused capacity and “push” more flow down them.

10
/2
0 10/10

10/10 10
/2
0

0/30s t

This flow has value 20 + 10 = 30, which is best possible.
So a greedy approach can work... but it can also fail.

John Lapinskas The Ford-Fulkerson algorithm 2 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

Now the definition of value is sorted out, how do we solve the problem?

How about a greedy approach? Repeatedly find paths from s to t with
unused capacity and “push” more flow down them.

20
/2
0 10/10

10/10 20
/2
0

10/30s t

This flow has value 20 + 10 = 30, which is best possible.
So a greedy approach can work... but it can also fail.

John Lapinskas The Ford-Fulkerson algorithm 2 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

What if we’d chosen this path first instead?

0/
20

0/30

0/
20

0/10

0/10

s t

Now there are no more paths from s to t with spare capacity, but our flow
only has value 20...

What if we allow ourselves to push flow backwards along a path?
We get a maximum flow! Now to generalise this...

John Lapinskas The Ford-Fulkerson algorithm 3 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

What if we’d chosen this path first instead?

20
/2
0

20/30

20
/2
00/10

0/10

s t

Now there are no more paths from s to t with spare capacity, but our flow
only has value 20...

What if we allow ourselves to push flow backwards along a path?
We get a maximum flow! Now to generalise this...

John Lapinskas The Ford-Fulkerson algorithm 3 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

What if we’d chosen this path first instead?

20
/2
0

20/30

20
/2
00/10

0/10

s t

Now there are no more paths from s to t with spare capacity, but our flow
only has value 20...

What if we allow ourselves to push flow backwards along a path?

We get a maximum flow! Now to generalise this...

John Lapinskas The Ford-Fulkerson algorithm 3 / 1

The problem: Find a maximum flow: a flow f maximising v(f).

What if we’d chosen this path first instead?

20
/2
0

10/30

20
/2
010/10

10/10

s t

Now there are no more paths from s to t with spare capacity, but our flow
only has value 20...

What if we allow ourselves to push flow backwards along a path?
We get a maximum flow! Now to generalise this...

John Lapinskas The Ford-Fulkerson algorithm 3 / 1

A flow is a function f : E → R such that for all e ∈ E and v ∈ V \ {s, t}:
0 ≤ f (e) ≤ c(e);

f +(v) :=
∑

w∈N+(v) f (v ,w) =
∑

u∈N−(v) f (u, v) =: f −(v).

The problem: Find a maximum flow: a flow f maximising v(f).

20/
20

20/30

20/
200/10

0/10

s t

We want to say: an augmenting path for a flow f is an undirected path
from s to t which we can push flow along. So forward edges e have
f (e) < c(e), and backward edges e have f (e) > 0.

But there’s an annoying technicality with bidirected edges...

John Lapinskas The Ford-Fulkerson algorithm 4 / 1

20/
20

20/30

20/
200/10

0/10

s t

10

1020

10 20

20

s t

We define the residual graph Gf of (G , c , s, t) on V (G) as follows:

If (u, v) ∈ E (G) with f (e) < c(e), add (u, v) to E (Gf); call this a
forward edge.

If (u, v) ∈ E (G) with f (e) > 0, add (v , u) to E (Gf); call this a
backward edge. (An edge can be both forward and backward!)

An augmenting path P is a directed path from s to t in Gf .

The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.

The residual capacity of P is the minimum residual capacity of its edges.
(This is the amount of flow we can push through P.)

John Lapinskas The Ford-Fulkerson algorithm 5 / 1

20/
20

20/30

20/
200/10

0/10

s t

10

1020

10 20

20

s t

We define the residual graph Gf of (G , c , s, t) on V (G) as follows:

If (u, v) ∈ E (G) with f (e) < c(e), add (u, v) to E (Gf); call this a
forward edge.

If (u, v) ∈ E (G) with f (e) > 0, add (v , u) to E (Gf); call this a
backward edge. (An edge can be both forward and backward!)

An augmenting path P is a directed path from s to t in Gf .

The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.

The residual capacity of P is the minimum residual capacity of its edges.
(This is the amount of flow we can push through P.)

John Lapinskas The Ford-Fulkerson algorithm 5 / 1

20/
20

20/30

20/
200/10

0/10

s t

10

1020

10 20

20

s t

We define the residual graph Gf of (G , c , s, t) on V (G) as follows:

If (u, v) ∈ E (G) with f (e) < c(e), add (u, v) to E (Gf); call this a
forward edge.

If (u, v) ∈ E (G) with f (e) > 0, add (v , u) to E (Gf); call this a
backward edge. (An edge can be both forward and backward!)

An augmenting path P is a directed path from s to t in Gf .

The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.

The residual capacity of P is the minimum residual capacity of its edges.
(This is the amount of flow we can push through P.)

John Lapinskas The Ford-Fulkerson algorithm 5 / 1

20/
20

20/30

20/
200/10

0/10

s t

10

1020

10 20

20

s t

We define the residual graph Gf of (G , c , s, t) on V (G) as follows:

If (u, v) ∈ E (G) with f (e) < c(e), add (u, v) to E (Gf); call this a
forward edge.

If (u, v) ∈ E (G) with f (e) > 0, add (v , u) to E (Gf); call this a
backward edge. (An edge can be both forward and backward!)

An augmenting path P is a directed path from s to t in Gf .

The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.

The residual capacity of P is the minimum residual capacity of its edges.
(This is the amount of flow we can push through P.)

John Lapinskas The Ford-Fulkerson algorithm 5 / 1

(u, v) ∈ E(G) with f (e) < c(e) yields a forward edge (u, v) ∈ E(Gf).
(u, v) ∈ E(G) with f (e) > 0 yields a backward edge (v , u) ∈ E(Gf).

An augmenting path P is a directed path from s to t in Gf .
The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.
The residual capacity of P is the minimum residual capacity of its edges.

20/
20

20/
200/10

10/10

20/30

10/30

0/10

10/10

s t

10

1020

10 20

20

s t

Define Push(G , c , s, t, f ,P) as follows:

Let C be the residual capacity of P. (Here C is 10.)

For each edge (u, v) of P: if c(u, v)− f (u, v) ≥ C , then add C to
f (u, v); otherwise, we have f (v , u) ≥ C , so subtract C from f (v , u).

Lemma 3: Push(G , c , s, t, f ,P) returns a new flow f ′, with value
v(f ′) = v(f) + C , in O(|V (G)|) time.

John Lapinskas The Ford-Fulkerson algorithm 6 / 1

(u, v) ∈ E(G) with f (e) < c(e) yields a forward edge (u, v) ∈ E(Gf).
(u, v) ∈ E(G) with f (e) > 0 yields a backward edge (v , u) ∈ E(Gf).

An augmenting path P is a directed path from s to t in Gf .
The residual capacity of (u, v) in Gf is max{c(u, v)− f (u, v), f (v , u)}.
The residual capacity of P is the minimum residual capacity of its edges.

20/
20

20/
20

0/10

10/10

20/30

10/30

0/10

10/10

s t

10

1020

10 20

20

s t

Define Push(G , c , s, t, f ,P) as follows:

Let C be the residual capacity of P. (Here C is 10.)

For each edge (u, v) of P: if c(u, v)− f (u, v) ≥ C , then add C to
f (u, v); otherwise, we have f (v , u) ≥ C , so subtract C from f (v , u).

Lemma 3: Push(G , c , s, t, f ,P) returns a new flow f ′, with value
v(f ′) = v(f) + C , in O(|V (G)|) time.

John Lapinskas The Ford-Fulkerson algorithm 6 / 1

The Ford-Fulkerson Algorithm

Algorithm: FordFulkerson

Input : A (weakly connected) flow network (G , c , s, t).
Output : A flow f with no augmenting paths.

1 begin
2 Construct the flow f with f (e) = 0 for all e ∈ E (G).
3 Construct the residual graph Gf .
4 while Gf contains a path P from s to t do
5 Find P using depth-first (or breadth-first) search.
6 Update f ← Push(G , c , s, t, f ,P).
7 Update Gf on the edges of P.

8 Return f .

By Lemma 3, every iteration of 4–7 increases v(f) by at least 1. So if f ∗

is a maximum flow, there are at most v(f ∗) iterations in total.

Every step takes O(|E |) time or O(|V |) time, and since G is weakly
connected we have |V | = O(|E |). So the running time is O(v(f ∗)|E |).

John Lapinskas The Ford-Fulkerson algorithm 7 / 1

Worked example

G

0/5

0/8

0/20/3

0/6

0/10

0/
8

0/5

0/7

s t

Gf

5

2

8

2

23

2

6

3

10

2

8

3

5

3

7

2

s t

Initialise flow and construct Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

0/5

0/8

0/20/3

0/6

0/10

0/
8

0/5

0/7

s t

Gf

5

2

8

2

23

2

6

3

10

2

8

3

5

3

7

2

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

2/5

0/8

2/20/3

0/6

2/10

0/
8

0/5

2/7

s t

Gf

5

2

8

2

23

2

6

3

10

2

8

3

5

3

7

2

s t

Push flow along the path. (This path has residual capacity 2.)
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

2/5

0/8

2/20/3

0/6

2/10

0/
8

0/5

2/7

s t

Gf

3

2

8

2

3

2

6

3

8

2

8

3

5

3

5

2

s t

Update Gf along the path.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

2/5

0/8

2/20/3

0/6

2/10

0/
8

0/5

2/7

s t

Gf

3

2

8

2

3

2

6

3

8

2

8

3

5

3

5

2

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

0/8

2/20/3

3/6

5/10

3/
8

0/5

5/7

s t

Gf

3

2

8

2

3

2

6

3

8

2

8

3

5

3

5

2

s t

Push flow along the path. (This path has residual capacity 3.)
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

0/8

2/20/3

3/6

5/10

3/
8

0/5

5/7

s t

Gf

3

5

8

2

3

2

3

3

5

5

5
3

5

3

2

5

s t

Update Gf along the path.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

0/8

2/20/3

3/6

5/10

3/
8

0/5

5/7

s t

Gf

3

5

8

2

3

2

3

3

5

5

5
3

5

3

2

5

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

2/8

2/20/3

3/6

7/10

3/
8

0/5

7/7

s t

Gf

3

5

8

2

3

2

3

3

5

5

5
3

5

3

2

5

s t

Push flow along the path. (This path has residual capacity 2.)
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

2/8

2/20/3

3/6

7/10

3/
8

0/5

7/7

s t

Gf

3

5

6

2

3

2

3

3

3

7

5
3

5

3

2

7

s t

Update Gf along the path.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

2/8

2/20/3

3/6

7/10

3/
8

0/5

7/7

s t

Gf

3

5

6

2

3

2

3

3

3

7

5
3

5

3

2

7

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

5/8

2/23/3

6/6

7/10

3/
8

3/5

7/7

s t

Gf

3

5

6

2

3

2

3

3

3

7

5
3

5

3

2

7

s t

Push flow along the path. (This path has residual capacity 3.)
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

5/8

2/23/3

6/6

7/10

3/
8

3/5

7/7

s t

Gf

3

5

3

5

3

3

2

3

6

3

7

5
3

2

3

2

7

s t

Update Gf along the path.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

5/8

2/23/3

6/6

7/10

3/
8

3/5

7/7

s t

Gf

3

5

3

5

3

3

2

3

6

3

7

5
3

2

3

2

7

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

7/8

2/23/3

6/6

7/10

1/
8

5/5

7/7

s t

Gf

3

5

3

5

3

3

2

3

6

3

7

5
3

2

3

2

7

s t

Push flow along the path. (This path has residual capacity 2.)
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

7/8

2/23/3

6/6

7/10

1/
8

5/5

7/7

s t

Gf

3

5

1

7

3

3

2

3

6

3

7

7
1

2

5

2

7

s t

Update Gf along the path.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

7/8

2/23/3

6/6

7/10

1/
8

5/5

7/7

s t

Gf

3

5

1

7

3

3

2

3

6

3

7

7
1

2

5

2

7

s t

Apply depth-first search to find an augmenting path in Gf .
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Worked example

G

5/5

7/8

2/23/3

6/6

7/10

1/
8

5/5

7/7

s t

Gf

3

5

1

7

3

3

2

3

6

3

7

7
1

2

5

2

7

s t

No such path exists, so we’re done! This flow has value 5 + 7 = 12.
John Lapinskas The Ford-Fulkerson algorithm 8 / 1

Why does this work?

A cut is any pair of disjoint sets A,B ⊆ V with A ∪ B = V , s ∈ A and t ∈ B. (So A and B
partition V , the source is in A and the sink is in B.)

Lemma 2: For all cuts (A,B), v(f) = f +(A)− f −(A) = f −(B)− f +(B).

5/5

7/8

2/23/3

6/6

7/10

1/
8

5/5

7/7

s t

A B

Write c+(A) =
∑

e out of A c(e). By Lemma 2, any flow g has value
v(g) = g+(A)− g−(A) ≤ c+(A) = 12, and our output flow has value 12.
So it must be maximum.

We can use the same argument to prove Ford-Fulkerson always works.

John Lapinskas The Ford-Fulkerson algorithm 9 / 1

Lemma 2: For all cuts (A,B), v(f) = f +(A)− f −(A) = f −(B)− f +(B).

To prove the flow f returned by Ford-Fulkerson is always maximum by
this argument, we will show there is always a cut (A,B) with
v(f) = c+(A), i.e. with f +(A) = c+(A) and f −(A) = 0.

5

1

7

3

6

3

7

7
1

5

7

s t

A B

We take A = {v ∈ V (G) : v reachable from s in Gf }, and B = V (G) \ A.
(A,B) is a cut: s ∈ A, and t /∈ A since f has no augmenting paths. ✓

John Lapinskas The Ford-Fulkerson algorithm 10 / 1

Lemma 2: For all cuts (A,B), v(f) = f +(A)− f −(A) = f −(B)− f +(B).

To prove the flow f returned by Ford-Fulkerson is always maximum by
this argument, we will show there is always a cut (A,B) with
v(f) = c+(A), i.e. with f +(A) = c+(A) and f −(A) = 0.

5

1

7

3

6

3

7

7
1

5

7

s t

A B

We take A = {v ∈ V (G) : v reachable from s in Gf }, and B = V (G) \ A.
(A,B) is a cut: ✓

f +(A) = c+(A): No A→ B forward edges in Gf ⇒ every A→ B edge in
G is filled to capacity ⇒ f +(A) = c+(A). ✓

John Lapinskas The Ford-Fulkerson algorithm 10 / 1

Lemma 2: For all cuts (A,B), v(f) = f +(A)− f −(A) = f −(B)− f +(B).

To prove the flow f returned by Ford-Fulkerson is always maximum by
this argument, we will show there is always a cut (A,B) with
v(f) = c+(A), i.e. with f +(A) = c+(A) and f −(A) = 0.

5

1

7

3

6

3

7

7
1

5

7

s t

A B

We take A = {v ∈ V (G) : v reachable from s in Gf }, and B = V (G) \ A.

(A,B) is a cut: ✓ f +(A) = c+(A): ✓

f −(A) = 0: No A→ B backward edges in Gf ⇒ every B → A edge in G
has zero flow ⇒ f −(A) = 0. ✓

John Lapinskas The Ford-Fulkerson algorithm 10 / 1

Lemma 2: For all cuts (A,B), v(f) = f +(A)− f −(A) = f −(B)− f +(B).

To prove the flow f returned by Ford-Fulkerson is always maximum by
this argument, we will show there is always a cut (A,B) with
v(f) = c+(A), i.e. with f +(A) = c+(A) and f −(A) = 0.

5

1

7

3

6

3

7

7
1

5

7

s t

A B

We take A = {v ∈ V (G) : v reachable from s in Gf }, and B = V (G) \ A.

(A,B) is a cut: ✓ f +(A) = c+(A): ✓ f −(A) = 0: ✓

So by Lemma 2, every other flow g has value g+(A) − g−(A) ≤ c+(A) =
v(f). Thus f is a maximum flow and Ford-Fulkerson is correct.

John Lapinskas The Ford-Fulkerson algorithm 10 / 1

We have proved three results for the price of one!

Theorem: Ford-Fulkerson always returns a maximum flow.

Theorem: There is always a maximum flow with integer values.

Proof: The maximum flow returned by Ford-Fulkerson has this property.
(We can prove this easily with a loop invariant: f starts with value zero,
and each iteration of the main loop adds an integer to f ’s value.)

Max-flow min-cut theorem: The value of a maximum flow is equal to
the minimum capacity of a cut, i.e. the minimum value of c+(A) over all
cuts (A,B).

Proof: Let f be a maximum flow, and let (A,B) be a cut minimising
c+(A). We already proved v(f) ≤ c+(A). Moreover, there is no
augmenting path for f , so exactly as before, there is a cut (A′,B ′) with
c+(A′) = v(f); thus v(f) ≥ c+(A). The result follows.

John Lapinskas The Ford-Fulkerson algorithm 11 / 1

