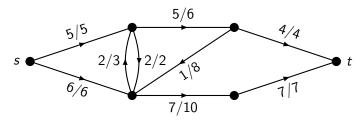
Why the Ford-Fulkerson algorithm looks so familiar COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Recap of last lecture

A flow network (G, c, s, t) is a directed graph G = (V, E), a capacity $c \colon E \to \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s) = N^{+}(t) = \emptyset$.



A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

• $0 \le f(e) \le c(e);$ • $f^+(v) := \sum_{w \in N^+(v)} f(v, w) = \sum_{u \in N^-(v)} f(u, v) =: f^-(v).$

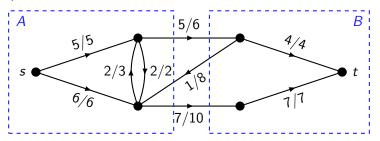
The value of f, denoted v(f), is $f^+(s)$.

The problem: Find a **maximum flow**: a flow f maximising v(f).

Theorem: The Ford-Fulkerson algorithm returns a maximum flow. It runs in time $O(v(f^*)|E|)$, where f^* is a maximum flow.

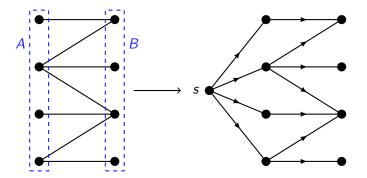
Theorem: There is always a maximum flow with integer values.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in V$. (So A and B partition V, the source is in A and the sink is in B.)



Max-flow min-cut theorem: The value of a maximum flow is equal to the minimum possible flow across a cut.

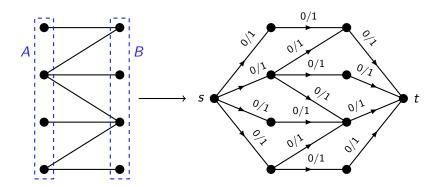
Recall that a matching in a graph is a collection of disjoint edges.



We can turn a graph G with bipartition (A, B) into a flow network:

- direct all G's edges from A to B;
- add a new vertex s and add every possible edge $s \rightarrow A$;

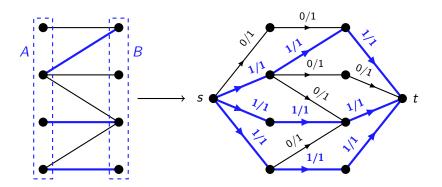
Recall that a matching in a graph is a collection of disjoint edges.



We can turn a graph G with bipartition (A, B) into a flow network:

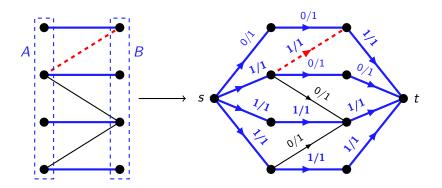
- add a new vertex t and add every possible edge $t \rightarrow B$;
- give every edge capacity 1.

Recall that a matching in a graph is a collection of disjoint edges.



Then integer-valued maximum flows correspond to maximum matchings, and maximum matchings correspond to integer-valued maximum flows.

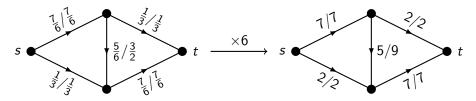
Recall that a matching in a graph is a collection of disjoint edges.



The augmenting paths are (essentially) the same for each.

In a real flow network, the capacities probably won't be integers...

How can we simulate rational weights?

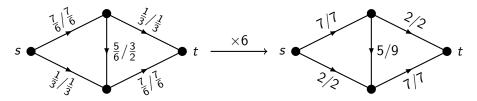


Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N} . Then for all k > 0, f is a maximum flow in (G, c, s, t) if and only if kf is a maximum flow in (G, kc, s, t). **Proof:** f is a flow in $(G, c, s, t) \Leftrightarrow kf$ is a flow in (G, kc, s, t). Moreover: kf is maximum in $(G, kc, s, t) \Leftrightarrow \forall$ flows kg of (G, kc, s, t): $v(kf) \ge v(kg)$

 $\Leftrightarrow \forall \text{ flows } \boldsymbol{g} \text{ of } (\boldsymbol{G}, \boldsymbol{c}, \boldsymbol{s}, \boldsymbol{t}): \ \boldsymbol{v}(kf) \geq \boldsymbol{v}(kg)$

In a real flow network, the capacities probably won't be integers...

How can we simulate rational weights?

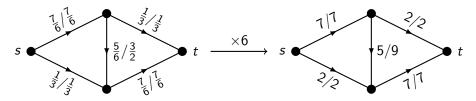


Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N} . Then for all k > 0, f is a maximum flow in (G, c, s, t) if and only if kf is a maximum flow in (G, kc, s, t). **Proof:** f is a flow in $(G, c, s, t) \Leftrightarrow kf$ is a flow in (G, kc, s, t). Moreover:

 $\begin{array}{l} \textit{kf is maximum in } (G,\textit{kc},\textit{s},t) \Leftrightarrow \forall \textit{ flows } \textit{g of } (G,\textit{c},\textit{s},t) \text{: } \textit{v}(\textit{kf}) \geq \textit{v}(\textit{kg}) \\ \Leftrightarrow \forall \textit{ flows } \textit{g of } (G,\textit{c},\textit{s},t) \text{: } \textit{kv}(\textit{f}) \geq \textit{kv}(\textit{g}) \end{array}$

In a real flow network, the capacities probably won't be integers...

How can we simulate rational weights?

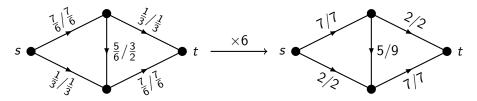


Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N} . Then for all k > 0, f is a maximum flow in (G, c, s, t) if and only if kf is a maximum flow in (G, kc, s, t). **Proof:** f is a flow in $(G, c, s, t) \Leftrightarrow kf$ is a flow in (G, kc, s, t). Moreover: kf is maximum in $(G, kc, s, t) \Leftrightarrow \forall$ flows g of (G, c, s, t): $kv(f) \ge kv(g)$

 $\Leftrightarrow \forall \text{ flows } g \text{ of } (G, c, s, t): \mathbf{v}(f) \geq \mathbf{v}(g)$

In a real flow network, the capacities probably won't be integers...

How can we simulate rational weights?

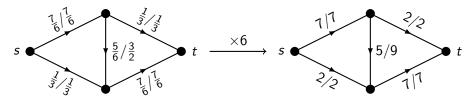


Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N} . Then for all k > 0, f is a maximum flow in (G, c, s, t) if and only if kf is a maximum flow in (G, kc, s, t). **Proof:** f is a flow in $(G, c, s, t) \Leftrightarrow kf$ is a flow in (G, kc, s, t). Moreover:

$$\begin{array}{l} \textit{kf is maximum in } (G,\textit{kc},\textit{s},t) \Leftrightarrow \forall \textit{ flows } \textit{g of } (G,\textit{c},\textit{s},t) \text{: } \textit{v}(f) \geq \textit{v}(\textit{g}) \\ \Leftrightarrow \textit{f is maximum in } (G,\textit{c},\textit{s},t). \end{array}$$

In a real flow network, the capacities probably won't be integers...

How can we simulate rational weights?



Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N} . Then for all k > 0, f is a maximum flow in (G, c, s, t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow kf$ is a flow in (G, kc, s, t). Moreover:

kf is maximum in $(G, kc, s, t) \Leftrightarrow f$ is maximum in (G, c, s, t).

So if the denominators of capacities in (G, c, s, t) are b_1, \ldots, b_m , then we find $L = lcm(b_1, \ldots, b_m)$, then find the max flow in (G, Lc, s, t).

How can we simulate rational weights?

If the denominators of capacities in (G, c, s, t) are b_1, \ldots, b_m , then we find $L = \text{lcm}(b_1, \ldots, b_m)$, then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in (G, c, s, t).

Problem: Remember Ford-Fulkerson's running time depends on the value of a maximum flow — this could increase a lot!

In fact, if we allow **irrational** edge capacities, it may never terminate... We prove this on the problem sheet!

Solution: If we always pick an augmenting path with **as few edges as possible**, then we are guaranteed to terminate in $O(|V||E|^2)$ time, no matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

In other words, we just have to use breadth-first search on the residual graph G_f to find augmenting paths, rather than depth-first search! This is the **Edmonds-Karp** algorithm.