Why the Ford-Fulkerson algorithm looks so familiar

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas Ford-Fulkerson redux 1/6

Recap of last lecture

A flow network (G, c,s,t) is a directed graph G = (V, E), a capacity
c: E— N, asource s € V, and asink t € V, with N~ (s) = N*(t) = 0.

5/6
5[]

6/6 11
7/10

A flow is a function f: E — R such that for all e € E and v € V' \ {s, t}:
e 0<f(e) <c(e)

° fF(v):= Zwem(v) flv,w) = ZueN‘(v) f(u,v) = (v).
The value of f, denoted v(f), is f(s).
The problem: Find a maximum flow: a flow f maximising v(f).

John Lapinskas Ford-Fulkerson redux 2/6

Theorem: The Ford-Fulkerson algorithm returns a maximum flow. It runs
in time O(v(f*)|E|), where f* is a maximum flow.

Theorem: There is always a maximum flow with integer values.

A cut is any pair of disjoint sets A,B C V with AUB =V, sec Aand
t € V. (So A and B partition V, the source is in A and the sink is in B.)

Max-flow min-cut theorem: The value of a maximum flow is equal to
the minimum possible flow across a cut.

John Lapinskas Ford-Fulkerson redux 3/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ direct all G's edges from A to B;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ direct all G's edges from A to B;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ direct all G's edges from A to B;

@ add a new vertex s and add every possible edge s — A;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ direct all G's edges from A to B;

@ add a new vertex s and add every possible edge s — A;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ add a new vertex s and add every possible edge s — A;

@ add a new vertex t and add every possible edge t — B;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

1
I — s t
1
1

We can turn a graph G with bipartition (A, B) into a flow network:
@ add a new vertex s and add every possible edge s — A;

@ add a new vertex t and add every possible edge t — B;

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
@ add a new vertex t and add every possible edge t — B;

@ give every edge capacity 1.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

L

1)
-7
A

We can turn a graph G with bipartition (A, B) into a flow network:
@ add a new vertex t and add every possible edge t — B;

@ give every edge capacity 1.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

<)

1
I — s t
1
1

Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

AY

Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

i D g

AY

Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.

And Ford-Fulkerson corresponds to our maximum matching algorithm!

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

o
7
N

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1
S &
L55>

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

N 2,

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

0/1

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

1/1

s
AN

The augmenting paths are (essentially) the same for each.

John Lapinskas Ford-Fulkerson redux 4/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

1
% /ﬁ" dl "E "G
X6
t —— s t
g 2 1
3/ . 2 1)
Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take

non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t).

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < V flows kg of (G, kc,s, t): v(kf) > v(kg)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < V flows kg of (G, kc,s, t): v(kf) > v(kg)
<V flows g of (G, c,s,t): v(kf) > v(kg)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < V flows g of (G, c,s,t): v(kf) > v(kg)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc,s, t) < V flows g of (G, c,s, t): v(kf) > v(kg)
<V flows g of (G, c,s,t): kv(f) > kv(g)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < V flows g of (G, c,s, t): kv(f) > kv(g)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc,s, t) < V flows g of (G, c,s, t): kv(f) > kv(g)
<V flows g of (G, c,s,t): v(f) > v(g)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:

kf is maximum in (G, kc, s, t) < V flows g of (G, c,s,t): v(f) > v(g)

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < V flows g of (G, c,s,t): v(f) > v(g)

< f is maximum in (G, c,s,t).

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

111 ' <05
x6
t —— S t
<05 H 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:

kf is maximum in (G, kc, s, t) < f is maximum in (G, c,s,t). []

John Lapinskas Ford-Fulkerson redux 5/6

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

i 'E G
x6
t —— S t
<05 11

Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).

Proof: f is a flow in (G, c,s,t) < kf is a flow in (G, kc, s, t). Moreover:
kf is maximum in (G, kc, s, t) < f is maximum in (G, c,s,t). []

So if the denominators of capacities in (G, ¢, s, t) are by,..., by, then we
find L = lem(by, ..., bm), then find the max flow in (G, Lc, s, t).

John Lapinskas Ford-Fulkerson redux 5/6

How can we simulate rational weights?

If the denominators of capacities in (G, ¢, s, t) are by, ..., bm, then we find L = lcm(b1, ..., bm),
then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G,c,s,t).

John Lapinskas Ford-Fulkerson redux 6/6

A better algorithm: Edmonds-Karp

How can we simulate rational weights?

If the denominators of capacities in (G, ¢, s, t) are by, ..., bm, then we find L = lcm(b1, ..., bm),
then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G,c,s,t).

Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!

John Lapinskas Ford-Fulkerson redux 6/6

A better algorithm: Edmonds-Karp

How can we simulate rational weights?

If the denominators of capacities in (G, ¢, s, t) are by, ..., bm, then we find L = lcm(b1, ..., bm),
then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G7 C7 s7 t)

Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as
possible, then we are guaranteed to terminate in O(|V/||E|?) time, no
matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

John Lapinskas Ford-Fulkerson redux 6/6

A better algorithm: Edmonds-Karp

How can we simulate rational weights?

If the denominators of capacities in (G, ¢, s, t) are by, ..., bm, then we find L = lcm(b1, ..., bm),
then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G7 C7 s7 t)

Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as
possible, then we are guaranteed to terminate in O(|V/||E|?) time, no
matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

In other words, we just have to use breadth-first search on the residual
graph Gr to find augmenting paths, rather than depth-first search! This is
the Edmonds-Karp algorithm.

John Lapinskas Ford-Fulkerson redux 6/6

