Why the Ford-Fulkerson algorithm looks so familiar

COMS20010 (Algorithms 11)

John Lapinskas, University of Bristol

John Lapinskas Ford-Fulkerson redux 1/6



Recap of last lecture

A flow network (G, c,s,t) is a directed graph G = (V, E), a capacity
c: E— N, asource s € V, and asink t € V, with N~ (s) = N*(t) = 0.
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A flow is a function f: E — R such that for all e € E and v € V' \ {s, t}:
e 0<f(e) <c(e)

° fF(v):= Zwem(v) flv,w) = ZueN‘(v) f(u,v) = (v).
The value of f, denoted v(f), is f(s).
The problem: Find a maximum flow: a flow f maximising v(f).
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Theorem: The Ford-Fulkerson algorithm returns a maximum flow. It runs
in time O(v(f*)|E|), where f* is a maximum flow.

Theorem: There is always a maximum flow with integer values.

A cut is any pair of disjoint sets A,B C V with AUB =V, sec Aand
t € V. (So A and B partition V, the source is in A and the sink is in B.)

Max-flow min-cut theorem: The value of a maximum flow is equal to
the minimum possible flow across a cut.
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Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:
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Matchings in bipartite graphs
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Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.
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Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.
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Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.

And Ford-Fulkerson corresponds to our maximum matching algorithm!
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Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.
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The augmenting paths are (essentially) the same for each.
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Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?
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Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take

non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
flow in (G, c,s,t) if and only if kf is a maximum flow in (G, kc, s, t).
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Lemma 1: Let (G, c,s, t) be a flow network where ¢ may take
non-negative values in QQ as well as N. Then for all kK > 0, f is a maximum
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So if the denominators of capacities in (G, ¢, s, t) are by,..., by, then we
find L = lem(by, ..., bm), then find the max flow in (G, Lc, s, t).
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How can we simulate rational weights?

If the denominators of capacities in (G, ¢, s, t) are by, ..., bm, then we find L = lcm(b1, ..., bm),
then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G,c,s,t).
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A better algorithm: Edmonds-Karp

How can we simulate rational weights?
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then find a maximum flow in (G, Lc, s, t). Then divide it by L to recover a maximum flow in
(G,c,s,t).

Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!
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Solution: If we always pick an augmenting path with as few edges as
possible, then we are guaranteed to terminate in O(|V/||E|?) time, no
matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)
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Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as
possible, then we are guaranteed to terminate in O(|V/||E|?) time, no
matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

In other words, we just have to use breadth-first search on the residual
graph Gr to find augmenting paths, rather than depth-first search! This is
the Edmonds-Karp algorithm.
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