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Recap of last lecture

A flow network (G , c , s, t) is a directed graph G = (V ,E ), a capacity
c : E → N, a source s ∈ V , and a sink t ∈ V , with N−(s) = N+(t) = ∅.
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A flow is a function f : E → R such that for all e ∈ E and v ∈ V \ {s, t}:
0 ≤ f (e) ≤ c(e);

f +(v) :=
∑

w∈N+(v) f (v ,w) =
∑

u∈N−(v) f (u, v) =: f −(v).

The value of f , denoted v(f ), is f +(s).

The problem: Find a maximum flow: a flow f maximising v(f ).
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Theorem: The Ford-Fulkerson algorithm returns a maximum flow. It runs
in time O(v(f ∗)|E |), where f ∗ is a maximum flow.

Theorem: There is always a maximum flow with integer values.

A cut is any pair of disjoint sets A,B ⊆ V with A ∪ B = V , s ∈ A and
t ∈ V . (So A and B partition V , the source is in A and the sink is in B.)
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Max-flow min-cut theorem: The value of a maximum flow is equal to
the minimum possible flow across a cut.
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Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.
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We can turn a graph G with bipartition (A,B) into a flow network:
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Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.
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Matchings in bipartite graphs
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Then integer-valued maximum flows correspond to maximum matchings,
and maximum matchings correspond to integer-valued maximum flows.

And Ford-Fulkerson corresponds to our maximum matching algorithm!
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Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.
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The augmenting paths are (essentially) the same for each.
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Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won’t be integers...
How can we simulate rational weights?
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Lemma 1: Let (G , c, s, t) be a flow network where c may take
non-negative values in Q as well as N. Then for all k > 0, f is a maximum
flow in (G , c, s, t) if and only if kf is a maximum flow in (G , kc , s, t).

Proof: f is a flow in (G , c , s, t) ⇔ kf is a flow in (G , kc , s, t).

Moreover:

So if the denominators of capacities in (G , c , s, t) are b1, . . . , bm, then we
find L = lcm(b1, . . . , bm), then find the max flow in (G , Lc , s, t).
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A better algorithm: Edmonds-Karp

How can we simulate rational weights?

If the denominators of capacities in (G , c, s, t) are b1, . . . , bm, then we find L = lcm(b1, . . . , bm),
then find a maximum flow in (G , Lc, s, t). Then divide it by L to recover a maximum flow in
(G , c, s, t).

Problem: Remember Ford-Fulkerson’s running time depends on the value
of a maximum flow — this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate...
We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as
possible, then we are guaranteed to terminate in O(|V ||E |2) time, no
matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

In other words, we just have to use breadth-first search on the residual
graph Gf to find augmenting paths, rather than depth-first search! This is
the Edmonds-Karp algorithm.
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