Why the Ford-Fulkerson algorithm looks so familiar COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Recap of last lecture

A flow network (G, c, s, t) is a directed graph $G=(V, E)$, a capacity $c: E \rightarrow \mathbb{N}$, a source $s \in V$, and a sink $t \in V$, with $N^{-}(s)=N^{+}(t)=\emptyset$.

A flow is a function $f: E \rightarrow \mathbb{R}$ such that for all $e \in E$ and $v \in V \backslash\{s, t\}$:

- $0 \leq f(e) \leq c(e)$;
- $f^{+}(v):=\sum_{w \in N^{+}(v)} f(v, w)=\sum_{u \in N^{-}(v)} f(u, v)=: f^{-}(v)$.

The value of f, denoted $v(f)$, is $f^{+}(s)$.
The problem: Find a maximum flow: a flow f maximising $v(f)$.

Theorem: The Ford-Fulkerson algorithm returns a maximum flow. It runs in time $O\left(v\left(f^{*}\right)|E|\right)$, where f^{*} is a maximum flow.

Theorem: There is always a maximum flow with integer values.
A cut is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B=V, s \in A$ and $t \in V$. (So A and B partition V, the source is in A and the sink is in B.)

Max-flow min-cut theorem: The value of a maximum flow is equal to the minimum possible flow across a cut.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- direct all G 's edges from A to B;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- direct all G 's edges from A to B;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- direct all G 's edges from A to B;
- add a new vertex s and add every possible edge $s \rightarrow A$;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- direct all G 's edges from A to B;
- add a new vertex s and add every possible edge $s \rightarrow A$;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- add a new vertex s and add every possible edge $s \rightarrow A$;
- add a new vertex t and add every possible edge $t \rightarrow B$;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- add a new vertex s and add every possible edge $s \rightarrow A$;
- add a new vertex t and add every possible edge $t \rightarrow B$;

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- add a new vertex t and add every possible edge $t \rightarrow B$;
- give every edge capacity 1 .

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

We can turn a graph G with bipartition (A, B) into a flow network:

- add a new vertex t and add every possible edge $t \rightarrow B$;
- give every edge capacity 1 .

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

Then integer-valued maximum flows correspond to maximum matchings, and maximum matchings correspond to integer-valued maximum flows.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

Then integer-valued maximum flows correspond to maximum matchings, and maximum matchings correspond to integer-valued maximum flows.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

Then integer-valued maximum flows correspond to maximum matchings, and maximum matchings correspond to integer-valued maximum flows.

And Ford-Fulkerson corresponds to our maximum matching algorithm!

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Matchings in bipartite graphs

Recall that a matching in a graph is a collection of disjoint edges.

The augmenting paths are (essentially) the same for each.

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in $(G, k c, s, t)$.
Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$.

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows $k g$ of $(G, k c, s, t): v(k f) \geq v(k g)$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows $k g$ of $(G, k c, s, t): v(k f) \geq v(k g)$ $\Leftrightarrow \forall$ flows g of $(G, c, s, t): v(k f) \geq v(k g)$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): v(k f) \geq v(k g)$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): v(k f) \geq v(k g)$

$$
\Leftrightarrow \forall \text { flows } g \text { of }(G, c, s, t): k v(f) \geq k v(g)
$$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): k v(f) \geq k v(g)$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): k v(f) \geq k v(g)$ $\Leftrightarrow \forall$ flows g of $(G, c, s, t): \mathbf{v}(\boldsymbol{f}) \geq \mathbf{v}(\boldsymbol{g})$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t$).

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): v(f) \geq v(g)$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in $(G, k c, s, t)$.
Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover:
$k f$ is maximum in $(G, k c, s, t) \Leftrightarrow \forall$ flows g of $(G, c, s, t): v(f) \geq v(g)$ $\Leftrightarrow f$ is maximum in (G, c, s, t).

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in ($G, k c, s, t)$.

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow f$ is maximum in $(G, c, s, t) . \quad \square$

Removing the simplifying assumptions: rational weights

In a real flow network, the capacities probably won't be integers...
How can we simulate rational weights?

Lemma 1: Let (G, c, s, t) be a flow network where c may take non-negative values in \mathbb{Q} as well as \mathbb{N}. Then for all $k>0, f$ is a maximum flow in (G, c, s, t) if and only if $k f$ is a maximum flow in $(G, k c, s, t)$.

Proof: f is a flow in $(G, c, s, t) \Leftrightarrow k f$ is a flow in $(G, k c, s, t)$. Moreover: $k f$ is maximum in $(G, k c, s, t) \Leftrightarrow f$ is maximum in $(G, c, s, t) . \square$
So if the denominators of capacities in (G, c, s, t) are b_{1}, \ldots, b_{m}, then we find $L=\operatorname{lcm}\left(b_{1}, \ldots, b_{m}\right)$, then find the max flow in $(G, L c, s, t)$.

A better algorithm: Edmonds-Karp

How can we simulate rational weights?
If the denominators of capacities in (G, c, s, t) are b_{1}, \ldots, b_{m}, then we find $L=\operatorname{lcm}\left(b_{1}, \ldots, b_{m}\right)$, then find a maximum flow in ($G, L c, s, t$). Then divide it by L to recover a maximum flow in (G, c, s, t).

A better algorithm: Edmonds-Karp

How can we simulate rational weights?
If the denominators of capacities in (G, c, s, t) are b_{1}, \ldots, b_{m}, then we find $L=\operatorname{lcm}\left(b_{1}, \ldots, b_{m}\right)$, then find a maximum flow in ($G, L c, s, t$). Then divide it by L to recover a maximum flow in (G, c, s, t).

Problem: Remember Ford-Fulkerson's running time depends on the value of a maximum flow - this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate... We prove this on the problem sheet!

A better algorithm: Edmonds-Karp

How can we simulate rational weights?
If the denominators of capacities in (G, c, s, t) are b_{1}, \ldots, b_{m}, then we find $L=\operatorname{lcm}\left(b_{1}, \ldots, b_{m}\right)$, then find a maximum flow in ($G, L c, s, t$). Then divide it by L to recover a maximum flow in (G, c, s, t).

Problem: Remember Ford-Fulkerson's running time depends on the value of a maximum flow - this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate... We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as possible, then we are guaranteed to terminate in $O\left(|V||E|^{2}\right)$ time, no matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

A better algorithm: Edmonds-Karp

How can we simulate rational weights?
If the denominators of capacities in (G, c, s, t) are b_{1}, \ldots, b_{m}, then we find $L=\operatorname{lcm}\left(b_{1}, \ldots, b_{m}\right)$, then find a maximum flow in ($G, L c, s, t$). Then divide it by L to recover a maximum flow in (G, c, s, t).

Problem: Remember Ford-Fulkerson's running time depends on the value of a maximum flow - this could increase a lot!

In fact, if we allow irrational edge capacities, it may never terminate... We prove this on the problem sheet!

Solution: If we always pick an augmenting path with as few edges as possible, then we are guaranteed to terminate in $O\left(|V||E|^{2}\right)$ time, no matter how big the maximum flow is. (See CLRS 26.7 and 26.8.)

In other words, we just have to use breadth-first search on the residual graph G_{f} to find augmenting paths, rather than depth-first search! This is the Edmonds-Karp algorithm.

