
Applications of Ford-Fulkerson
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas Applications of Ford-Fulkerson 1 / 8



Circulations: Multiple sources and sinks

One of our simplifying assumptions was that a flow network only has one
source and one sink. But in e.g. water networks, this is often not true.

We can model situations like these as circulations, in which we allow every
node to be a source or sink.

John Lapinskas Applications of Ford-Fulkerson 2 / 8



Circulations: Multiple sources and sinks

One of our simplifying assumptions was that a flow network only has one
source and one sink. But in e.g. water networks, this is often not true.

Instead of maximising flow, we specify how much each source supplies and
how much each sink consumes, and try to satisfy these requirements.

John Lapinskas Applications of Ford-Fulkerson 2 / 8



A circulation network (G , c ,D) is a directed graph G = (V ,E ), a
capacity function c : E → N, and a demand function D : V → Z.

3

2

2

3

2

2

2
-6

-1

4

3 0

A vertex v with demand D(v) > 0 is a sink.
A vertex v with demand D(v) < 0 is a source.

A circulation is a function f : E → R with 0 ≤ f (e) ≤ c(e) for all e ∈ E ,
and f −(v)− f +(v) = D(v) (not zero!) for all v ∈ V . Note flow is
conserved except at sources and sinks.

Our problem: Does a circulation exist? Here: yes!

John Lapinskas Applications of Ford-Fulkerson 3 / 8



A circulation network (G , c ,D) is a directed graph G = (V ,E ), a
capacity function c : E → N, and a demand function D : V → Z.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

A vertex v with demand D(v) > 0 is a sink.
A vertex v with demand D(v) < 0 is a source.

A circulation is a function f : E → R with 0 ≤ f (e) ≤ c(e) for all e ∈ E ,
and f −(v)− f +(v) = D(v) (not zero!) for all v ∈ V . Note flow is
conserved except at sources and sinks.

Our problem: Does a circulation exist? Here: yes!
John Lapinskas Applications of Ford-Fulkerson 3 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3

2

2

3

2

2

2
-6

-1

4

3 0

3

2

2

3

2

2

2

4

3

1

6

-6

-1

4

3 0

t

s

Write S = {sources}, T = {sinks}.
Then transform our input circulation network into a flow network:

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3

2

2

3

2

2

2
-6

-1

4

3 0

3

2

2

3

2

2

2

4

3

1

6

-6

-1

4

3 0

t

s

Write S = {sources}, T = {sinks}.
Then transform our input circulation network into a flow network:

Remove the demand functions.

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3

2

2

3

2

2

2
-6

-1

4

3 0

3

2

2

3

2

2

2

4

3

1

6

-6

-1

4

3 0

t

s

Write S = {sources}, T = {sinks}.
Then transform our input circulation network into a flow network:

Remove the demand functions.

Add a new vertex t and add every possible edge T → t.
Give each edge (v , t) capacity D(v).

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3

2

2

3

2

2

2
-6

-1

4

3 0

3

2

2

3

2

2

2

4

3

1

6

-6

-1

4

3 0

t

s

Write S = {sources}, T = {sinks}.
Then transform our input circulation network into a flow network:

Add a new vertex t and add every possible edge T → t.
Give each edge (v , t) capacity D(v).

Add a new vertex s and add every possible edge s → S . Give each
edge (s, v) capacity −D(v).

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa:

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa:

Capacity constraints on left ⇔ Corresponding constraints on right

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa:

Demand satisfied outside S ∪ T ⇔ Flow conserved outside S ∪ T

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa:

Demand satisfied in T ⇔ Flow conserved in T and
flow value is

∑
v∈T D(v)

(Remember flow value can be taken at any cut; see Lemma 2 last lecture.)
John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa:

Demand satisfied in S ⇔ Flow conserved in S and
flow value is −

∑
v∈S D(v)

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Finding circulations

Again, we can reduce to finding a maximum flow in a flow network.

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2
-6

-1

4

3 0

3/
3

2/2

1/2

2/3

2/
2

2/2

2/2

4/4

3/3

1/1

6/6

-6

-1

4

3 0

t

s

We claim every circulation on the left corresponds to a flow with value∑
v∈T D(v) = −

∑
v∈S D(v) on the right, and vice versa.

The algorithm: Construct a flow network as above and run Edmonds-Karp.
If it returns a flow with value

∑
v∈T D(v) = −

∑
v∈S D(v), compute and

return the corresponding circulation; otherwise, no circulation exists.

John Lapinskas Applications of Ford-Fulkerson 4 / 8



Adding vertex capacities

We’ve already put limits on the amount of flow that can pass through each
edge of the network. What if we want to do the same for vertices? E.g. a
pumping station might only be able to handle a limited amount of water.

2

3 4
9

1 7

2

5

3 4

s 8 5

3 6 t

A vertex flow network (G , cE , cV , s, t) is a flow network (G , cE , s, t)
combined with a vertex capacity function cV : V \ {s, t} → N.

A function f : E → R is a flow if it is a flow in (G , cE , s, t) and also, for
all v ∈ V (G ), 0 ≤ f +(v) ≤ cV (v). (Note the first condition implies
f +(v) = f −(v).)

John Lapinskas Applications of Ford-Fulkerson 5 / 8



Adding vertex capacities

We’ve already put limits on the amount of flow that can pass through each
edge of the network. What if we want to do the same for vertices? E.g. a
pumping station might only be able to handle a limited amount of water.

2/2

2/3 4/
4 3/9

0/1 5/7

0/2

5/5

2/3 3/4

s 8 5

3 6 t

A vertex flow network (G , cE , cV , s, t) is a flow network (G , cE , s, t)
combined with a vertex capacity function cV : V \ {s, t} → N.

A function f : E → R is a flow if it is a flow in (G , cE , s, t) and also, for
all v ∈ V (G ), 0 ≤ f +(v) ≤ cV (v). (Note the first condition implies
f +(v) = f −(v).)

John Lapinskas Applications of Ford-Fulkerson 5 / 8



Again, we can reduce this to a flow network!

We use a design pattern called a vertex gadget: we simulate each vertex
of the vertex flow network “independently” in the flow network.

2
· · ·

1

...

9

...

7 · · ·

2
· · ·8

v

8

2
· · ·

9

...

2
· · ·

1

...

7 · · ·
v− v+

For each vertex v in the original vertex flow network:

Replace v by new vertices v+ and v−, joined by an edge v− → v+

with capacity cV (v);

For each edge (u, v), add an edge (u+, v−) with capacity cE (u, v);

For each edge (v ,w), add an edge (v+,w−) with capacity cE (v ,w).

John Lapinskas Applications of Ford-Fulkerson 6 / 8



Again, we can reduce this to a flow network!

We use a design pattern called a vertex gadget: we simulate each vertex
of the vertex flow network “independently” in the flow network.

2/2
· · ·

0/1

...

3/9

...

5/7
· · ·

0/2
· · ·8

v

5/8

2/2
· · ·

3/9

...

0/2
· · ·

0/1

...

5/7
· · ·

v− v+

Then flows on the left correspond to flows on the right as above:

John Lapinskas Applications of Ford-Fulkerson 6 / 8



Again, we can reduce this to a flow network!

We use a design pattern called a vertex gadget: we simulate each vertex
of the vertex flow network “independently” in the flow network.

2/2
· · ·

0/1

...

3/9

...

5/7
· · ·

0/2
· · ·8

v

5/8

2/2
· · ·

3/9

...

0/2
· · ·

0/1

...

5/7
· · ·

v− v+

Then flows on the left correspond to flows on the right as above:

Vertex capacity constraint for v ⇔ Edge capacity constraint for (v−, v+)

John Lapinskas Applications of Ford-Fulkerson 6 / 8



Again, we can reduce this to a flow network!

We use a design pattern called a vertex gadget: we simulate each vertex
of the vertex flow network “independently” in the flow network.

2/2
· · ·

0/1

...

3/9

...

5/7
· · ·

0/2
· · ·8

v

5/8

2/2
· · ·

3/9

...

0/2
· · ·

0/1

...

5/7
· · ·

v− v+

Then flows on the left correspond to flows on the right as above:

Flow conservation at v ⇔ Flow conservation at v−,v+

John Lapinskas Applications of Ford-Fulkerson 6 / 8



Again, we can reduce this to a flow network!

We use a design pattern called a vertex gadget: we simulate each vertex
of the vertex flow network “independently” in the flow network.

2/2
· · ·

0/1

...

3/9

...

5/7
· · ·

0/2
· · ·8

v

5/8

2/2
· · ·

3/9

...

0/2
· · ·

0/1

...

5/7
· · ·

v− v+

Then flows on the left correspond to flows on the right as above:

Edge capacity constraints ⇔ Edge capacity constraints other than (v−, v+).

John Lapinskas Applications of Ford-Fulkerson 6 / 8



The full construction looks like this (with boxes to point out the gadgets):

2/2

2/3

4/4

3/9

0/1

5/70/2

5/5

2/3

3/4

s

8

5

3

6

t

2/2

2/3

4/4

3/9

0/1

5/70/2

5/5

2/3

3/4

5/8

5/5

2/3

6/6

s

t

As with circulations, to find a maximum flow we build the flow network on
the right, run Edmonds-Karp, and then take the corresponding flow in the
vertex flow network on the left.

John Lapinskas Applications of Ford-Fulkerson 7 / 8



Connection to linear programming

We can also look at flow problems as linear programming problems whose
variables are the flow at each edge:

20

10

30

10 20
s

v1 v2

t

f (s, v1) + f (s, v2) → max subject to

f (s, v1) = f (v1, v2) + f (v1, t);

f (s, v2) + f (v1, v2) = f (v2, t);

0 ≤ f (s, v1) ≤ 20;

0 ≤ f (s, v2) ≤ 10;

0 ≤ f (v1, v2) ≤ 30;

0 ≤ f (v1, t) ≤ 10;

0 ≤ f (v2, t) ≤ 20.

The objective function is the value of the flow.

John Lapinskas Applications of Ford-Fulkerson 8 / 8



Connection to linear programming

We can also look at flow problems as linear programming problems whose
variables are the flow at each edge:

20

10

30

10 20
s

v1 v2

t

f (s, v1) + f (s, v2) → max subject to

f (s, v1) = f (v1, v2) + f (v1, t);

f (s, v2) + f (v1, v2) = f (v2, t);

0 ≤ f (s, v1)≤ 20;

0 ≤ f (s, v2)≤ 10;

0 ≤ f (v1, v2)≤ 30;

0 ≤ f (v1, t)≤ 10;

0 ≤ f (v2, t)≤ 20.

These constraints are satisfied precisely when 0 ≤ f (e) ≤ c(e) for all
edges e.

John Lapinskas Applications of Ford-Fulkerson 8 / 8



Connection to linear programming

We can also look at flow problems as linear programming problems whose
variables are the flow at each edge:

20

10

30

10 20
s

v1 v2

t

f (s, v1) + f (s, v2) → max subject to

f (s, v1)= f (v1, v2) + f (v1, t);

f (s, v2) + f (v1, v2)= f (v2, t);

0 ≤ f (s, v1) ≤ 20;

0 ≤ f (s, v2) ≤ 10;

0 ≤ f (v1, v2) ≤ 30;

0 ≤ f (v1, t) ≤ 10;

0 ≤ f (v2, t) ≤ 20.

These constraints are satisfied precisely when flow is conserved at v1 and v2.

John Lapinskas Applications of Ford-Fulkerson 8 / 8



Connection to linear programming

We can also look at flow problems as linear programming problems whose
variables are the flow at each edge:

20

10

30

10 20
s

v1 v2

t

f (s, v1) + f (s, v2) → max subject to

f (s, v1) = f (v1, v2) + f (v1, t);

f (s, v2) + f (v1, v2) = f (v2, t);

0 ≤ f (s, v1) ≤ 20;

0 ≤ f (s, v2) ≤ 10;

0 ≤ f (v1, v2) ≤ 30;

0 ≤ f (v1, t) ≤ 10;

0 ≤ f (v2, t) ≤ 20.

So maximum flows on the left correspond exactly to optimal LP solutions
on the right, and we could use LP algorithms to solve flow problems!

John Lapinskas Applications of Ford-Fulkerson 8 / 8



Connection to linear programming

We can also look at flow problems as linear programming problems whose
variables are the flow at each edge:

20

10

30

10 20
s

v1 v2

t

f (s, v1) + f (s, v2) → max subject to

f (s, v1) = f (v1, v2) + f (v1, t);

f (s, v2) + f (v1, v2) = f (v2, t);

0 ≤ f (s, v1) ≤ 20;

0 ≤ f (s, v2) ≤ 10;

0 ≤ f (v1, v2) ≤ 30;

0 ≤ f (v1, t) ≤ 10;

0 ≤ f (v2, t) ≤ 20.

Sadly, this is a nice connection but not a good idea in practice — usually
flow-specific algorithms are much faster...

John Lapinskas Applications of Ford-Fulkerson 8 / 8


